Q-Align Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels

Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels

TL; DR:教会多模态大模型用文本等级评价词(如 Good、Bad、Excellent 等)来评估视觉质量分。


图像美学质量评估是一个小方向,但是实际业务中很有用,比如可以用于图片优选、图片裁剪等。一般来说,我们期望模型给出图像(客观 / 美学)质量的标量分数值,如 1.2,2.3 等,然后进行排序筛选,可以看做是一个回归任务。那么,在大模型时代,该怎么评估利用多模态大模型的能力,来评估图像的质量呢?用户可以与多模态大模型自由地对话,但对于数字似乎还不够敏感和准确。直接通过 prompt 让模型输出分数不太可行。本文考虑到我们人类去评估图像质量的时候,其实也不是给出一个打分,而通常是一系列文本等级评价词(文中称为 discrete text-defined levels,如 Good、Bad、Excellent 等)来给出评价。

方法

训练方法

本文方法分为三个阶段,如下图所示。首先,是训练人类评分员,统一图像质量标准,分为五个等级,由差到好分别为 BAD,POOR,FAIR,GOOD,EXCELLENT;第二步,有人类评分员对图像进行标注,标注方法可以是直接选质量等级或者在质量等级条上选一个值,总之不是直接给出标量分数值,第三步,训练多模态大模型根据标注质量等级来训练。

在推理时,对模型为各质量等级生成的分数进行 softmax 转换成概率,作为权重加权计算出一个标量图像质量得分。

在这里插入图片描述

模型结构

Q-Align 的多模态大模型结构如下图所示,LLM 和 Visual Encoder 中间的 adapter 结构实际上是 Perceiver Resampler + Linear。其实,这就是 mPLUG-Owl-2 的模型结构。

在这里插入图片描述

总结

Q-Align 利用大模型对语言文本的理解能力,将图像质量打分工作转换为离散的质量等级词的生成,效果不错。大模型在图像质量评估方面的工作,可以关注一下 Q-Future,这个组一直深耕图像质量评估方向,在大模型时代,其发布的 Q-Bench、Q-Align 等工作都很不错。

### lmms-eval评估报告概述 lmms-eval的出现标志着多模态模型评估进入了一个新时代[^1]。这一工具提供了一套统一的标准来衡量不同类型的多模态学习模型的表现,从而提高了研究效率并促进了跨团队的合作与竞争。 #### 用户体验反馈 用户对于lmms-eval的整体评价积极正面。许多研究人员表示,这套新的评估体系使得比较各种模型变得更加直观简单,并且能够更好地识别出哪些特定领域内表现优异或是存在不足之处。此外,随着越来越多的研究人员参与到该平台上来开发新功能或改进现有算法,社区内的协作氛围也日益浓厚。 #### 技术细节与应用案例 具体来说,在实际操作过程中,lmms-eval通过一系列精心设计的任务来全面考察目标模型的各项技能。例如,在处理图像理解任务时,除了传统的分类准确性外,还会关注模型能否正确解释复杂的场景描述;而在自然语言处理方面,则会检验其是否具备足够的上下文感知能力和逻辑推理水平。这些细致入微的设计确保了最终得出的结果既具有广泛适用性又不失深度洞察力[^3]。 ```python # 示例代码展示如何使用lmms-eval库进行基本评估 import lmms_eval as le def evaluate_model(model, dataset): evaluator = le.Evaluator() results = evaluator.run_evaluation(model=model, data=dataset) return results['accuracy'], results['precision'] acc, prec = evaluate_model(my_multimodal_model, test_dataset) print(f"Accuracy: {acc}, Precision: {prec}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值