Yarn 容量调度器多队列提交案例

本文介绍了如何在Hadoop YARN环境中创建和管理多队列,以满足不同业务需求和资源分配。通过配置capacity-scheduler.xml,设置default和hive两个队列的资源占比,确保资源合理分配。此外,文章还详细讲解了如何配置任务优先级,以应对资源紧张时的重要任务调度,并给出了启用任务优先级和调整任务优先级的步骤。
摘要由CSDN通过智能技术生成

Yarn 容量调度器多队列提交案例

1)在生产环境怎么创建队列?
(1)调度器默认就 1 个 default 队列,不能满足生产要求。
(2)按照框架:hive /spark/ flink 每个框架的任务放入指定的队列(企业用的不是特别多)
(3)按照业务模块:登录注册、购物车、下单、业务部门 1、业务部门 2
2)创建多队列的好处?
(1)因为担心员工不小心,写递归死循环代码,把所有资源全部耗尽。
(2)实现任务的降级使用,特殊时期保证重要的任务队列资源充足。
业务部门 1(重要)=》业务部门 2(比较重要)=》下单(一般)=》购物车(一般)=》登录注册(次要)

需求

需求 1:default 队列占总内存的 40%,最大资源容量占总资源 60%,hive 队列占总内存的 60%,最大资源容量占总资源 80%。
需求 2:配置队列优先级

配置多队列的容量调度器

在 capacity-scheduler.xml 中配置如下:

(1)修改如下配置

<!-- 指定多队列,增加 hive 队列 -->
<property>
	<name>yarn.scheduler.capacity.root.queues</name>
	 <value>default,hive</value>
	 <description> The queues at the this level (root is the root queue). </description>
</property>
<!-- 降低 default 队列资源额定容量为 40%,默认 100% -->
<property>
	 <name>yarn.scheduler.capacity.root.default.capacity</name>
	 <value>40</value>
</property>
<!-- 降低 default 队列资源最大容量为 60%,默认 100% -->
<property>
	 <name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
	 <value>60</value>
</property>

(2)为新加队列添加必要属性:

<!-- 指定 hive 队列的资源额定容量 -->
<property>
	 <name>yarn.scheduler.capacity.root.hive.capacity</name>
	 <value>60</value>
</property>
<!-- 用户最多可以使用队列多少资源,1 表示 -->
<property>
	 <name>yarn.scheduler.capacity.root.hive.user-limit-factor</name>
	 <value>1</value>
</property>
<!-- 指定 hive 队列的资源最大容量 -->
<property>
	 <name>yarn.scheduler.capacity.root.hive.maximum-capacity</name>
	 <value>80</value>
</property>
<!-- 启动 hive 队列 -->
<property>
	 <name>yarn.scheduler.capacity.root.hive.state</name>
	 <value>RUNNING</value>
</property>
<!-- 哪些用户有权向队列提交作业 -->
<property>
	 <name>yarn.scheduler.capacity.root.hive.acl_submit_applications</name>
	 <value>*</value>
</property>
<!-- 哪些用户有权操作队列,管理员权限(查看/杀死) -->
<property>
	 <name>yarn.scheduler.capacity.root.hive.acl_administer_queue</name>
	 <value>*</value>
</property>
<!-- 哪些用户有权配置提交任务优先级 -->
<property>
	<name>yarn.scheduler.capacity.root.hive.acl_application_max_priority</name>
	 <value>*</value>
</property>
<!-- 任务的超时时间设置:yarn application -appId appId -updateLifetime Timeout 参考资料: https://blog.cloudera.com/enforcing-application-lifetime-slasyarn/ -->
<!-- 如果 application 指定了超时时间,则提交到该队列的 application 能够指定的最大超时时间不能超过该值。-->
<property>
	 <name>yarn.scheduler.capacity.root.hive.maximum-applicationlifetime</name>
	 <value>-1</value>
</property>
<!-- 如果 application 没指定超时时间,则用 default-application-lifetime 作为默认值 -->
<property>
	 <name>yarn.scheduler.capacity.root.hive.default-applicationlifetime</name>
	 <value>-1</value>
</property>

2)分发配置文件
3)重启 Yarn 或者执行 yarn rmadmin -refreshQueues 刷新队列,就可以看到两条队列:
在这里插入图片描述

向 Hive 队列提交任务

1)hadoop jar 的方式
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount -D mapreduce.job.queuename=hive /input /output
注: -D 表示运行时改变参数值
在这里插入图片描述
2)打 jar 包的方式
默认的任务提交都是提交到 default 队列的。如果希望向其他队列提交任务,需要在Driver 中声明:
conf.set(“mapreduce.job.queuename”,“hive”);
这样,这个任务在集群提交时,就会提交到 hive 队列:
在这里插入图片描述

任务优先级

容量调度器,支持任务优先级的配置,在资源紧张时,优先级高的任务将优先获取资源。
默认情况,Yarn 将所有任务的优先级限制为 0,若想使用任务的优先级功能,须开放该限制。
1)修改 yarn-site.xml 文件,增加以下参数

<property>
 	<name>yarn.cluster.max-application-priority</name>
 	<value>5</value>
</property>

2)分发配置,并重启 Yarn
3)模拟资源紧张环境,可连续提交以下任务,直到新提交的任务申请不到资源为止。
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi 5 2000000
4)再次重新提交优先级高的任务
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi -D mapreduce.job.priority=5 5 2000000
5)也可以通过以下命令修改正在执行的任务的优先级。
yarn application -appID <ApplicationID> -updatePriority 优先级

yarn application -appID application_1611133087930_0009 -updatePriority 5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值