gnss方程中参数可估性判断

在看论文过程中,常常会遇到一些文章对gnss观测方程进行了参数重整,获得新的有偏参数,如何判断这些新参数是否可估呢?

判断参数可估性并在不可估(即设计矩阵秩亏)时给出参数重整方案,Teunissen在1985年将S变换理论应用到了gnss领域,用于解决上述问题。

S变换理论的核心思想为:有一个观测方程y=Ax,其中y为观测值,维度m*1;x为待估参数,维度n*1;A为设计矩阵,维度m*n,m>n。当rank(A)=r<n时,矩阵秩亏,无法估得无偏参数,只有进行参数重整,减少待估参数数量(可估参数数量为A的秩,即r)才可进行求解。

这里回顾线性代数中矩阵的子空间,已知rank(A)=r<n,零空间dimN(A)=n-r;列空间dimR(A)=r;行空间dimR(A^{T})=r;左零空间dimN(A^{T})=m-r。如何利用这些子空间获得可估参数的形式呢?

由于参数x无法无偏估计得到,我们将x拆分为可估参数\alpha(r*1)和不可估参数\beta((n-r)*1),即x=S\alpha +V\beta=\begin{bmatrix} S & V \end{bmatrix}\begin{bmatrix} \alpha \\ \beta \end{bmatrix},其中V维度(n-r)*1,即A的零空间,满足AV=0;S维度n*r,为V的补空间,带入原式y=Ax=A(S\alpha +V\beta )=AS\alpha =Ax_{\alpha },构成了新的观测方程。参数重整的目的就是获得可估参数\alpha

\begin{bmatrix} \alpha \\ \beta \end{bmatrix}=\begin{bmatrix} S & V \end{bmatrix}^{-1}x=\begin{bmatrix} [(V^{\perp })^{T}S]^{-1}(V^{\perp })^{T}\\ [(S^{\perp })^{T}V]^{-1}(S^{\perp })^{T} \end{bmatrix}x

x_{\alpha }=S\alpha =S'x

S'=S[(V^{\perp })^{T}S]^{-1}(V^{\perp })^{T}=I_{n}-V[(S^{\perp })^{T}V]^{-1}(S^{\perp })^{T}

但这里存在的难点是补空间S不是唯一的,如何获得简单的S从而得到简洁的可估参数形式笔者觉得需要技巧。

例子:

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值