摘要
公 式 1 : ∫ 1 c o s x d x = ∫ s e c x d x = ln ∣ s e c x + t a n x ∣ + C 公式1:\int{\frac{1}{cosx}dx} = \int{{secx}dx} = \ln|secx+tanx|+C 公式1:∫cosx1dx=∫secxdx=ln∣secx+tanx∣+C
公 式 2 : ∫ 1 s i n x d x = ∫ c s c x d x = ln ∣ c s c x − c o t x ∣ + C 公式2:\int{\frac{1}{sinx}dx} = \int{{cscx}dx} = \ln|cscx-cotx|+C 公式2:∫sinx1dx=∫cscxdx=ln∣cscx−cotx∣+C
公式一:
∫ 1 c o s x d x = ∫ s e c x d x = ln ∣ s e c x + t a n x ∣ + C \int{\frac{1}{cosx}dx} = \int{{secx}dx}= \ln|secx+tanx|+C ∫cosx1dx=∫secxdx=ln∣secx+tanx∣+C
这个公式推导的方法确实很多,但是都不容易想到。但是考的贼多,所以一定要记住。不仅要正向记,而且反向也要记,要知道 ln ∣ s e c x + t a n x ∣ + C \ln|secx+tanx|+C ln∣secx+tanx∣+C 的导数。
一个推导过程:
方法很多,最重要的是记住这个公式,正向记了反向记。
现在闭上眼睛,能回想起来吗? 艹,好像不能……抄十遍去……
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
公式二:
∫ 1 s i n x d x \int{\frac{1}{sinx}dx} ∫sinx1dx = ∫ c s c x d x \int{{cscx}dx} ∫cscxdx = ln ∣ c s c x − c o t x ∣ + C \ln|cscx-cotx|+C ln∣cscx−cotx∣+C
这个公式相对用到较少一点,但是还是记住吧。
推导方法大致和上面的一样,不在这里写了吧。
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
再记
有些三角函数不太熟悉,复习复习:
1 s i n x \frac{1}{sinx} sinx1= c s c x cscx cscx,这叫宇哥。不,余割。其实记住这个就能记住另外两个了:
1、 c o t x cotx cotx = 1 t a n x d x \frac{1}{tanx}dx tanx1dx。 考谈宁 等于 谈宁分之一,多读几遍就明白蕴涵着的深层次的含义,不用记就能记着;
2、一个萝卜一个坑, s e c x secx secx 那就是 c o s x cosx cosx的倒数了呀。
对了, s e c x secx secx 求导是 s e c x t a n x secxtanx secxtanx,记住。
那 1 c o s x \frac{1}{cosx} cosx1的导数呢?
等我算算……MD,你耍我的吧!!!