这篇文章的目的是以布尔代数公理证明定理。
对偶原理:0with1,+ with · 互换以后,公理(定理)任然成立。
布尔代数的公理如下
单变量的布尔代数定理如下
单变量的布尔代数定理很容易用真值表证明。
多变量的布尔定理如下
交换律,结合律,分配律同样容易用真值表证明。其中T8’最好用对偶法则记忆。
吸收律的证明需要用到分配律:
B·(B+C)=(B+B)·(B+C)=B+B·C=B·1+B·C=B·(1+C)=B·1=B 证毕
合并律也很容易用分配律证得,不再赘述。
一致律的一种证明方式是展开:
B·C+B’·D+C·D
=B·C·(D+D’)+B’·(C+C’)·D+(B+B’)·C·D
=BCD+BCD’+B’CD+B’C’D+BCD+B’CD
(容易发现第5项和第1项重复,第6项和第3项重复,根据重叠定理可以消去)
= BCD+BCD’+B’CD+B’C’D
= B·C+B’·D
一种证明方式是添项:
(B+C)(B’+D)(C+D)
=(B+C) (C+D) (B’+D)(C+D)
=(C+BD)(D+B’C)
=CD+BD+B’C
=CD+BD+B’C+B’B
=(B+C)D+(B+C)B’
=(B+C)(B’+D)