布尔定理及证明(完整版)

这篇文章的目的是以布尔代数公理证明定理。

对偶原理:0with1,+ with · 互换以后,公理(定理)任然成立。

布尔代数的公理如下
在这里插入图片描述

单变量的布尔代数定理如下

在这里插入图片描述

单变量的布尔代数定理很容易用真值表证明。

多变量的布尔定理如下

在这里插入图片描述

交换律,结合律,分配律同样容易用真值表证明。其中T8’最好用对偶法则记忆。

吸收律的证明需要用到分配律:
B·(B+C)=(B+B)·(B+C)=B+B·C=B·1+B·C=B·(1+C)=B·1=B 证毕

合并律也很容易用分配律证得,不再赘述。

一致律的一种证明方式是展开:
B·C+B’·D+C·D
=B·C·(D+D’)+B’·(C+C’)·D+(B+B’)·C·D
=BCD+BCD’+B’CD+B’C’D+BCD+B’CD
(容易发现第5项和第1项重复,第6项和第3项重复,根据重叠定理可以消去)
= BCD+BCD’+B’CD+B’C’D
= B·C+B’·D

一种证明方式是添项:
(B+C)(B’+D)(C+D)
=(B+C) (C+D) (B’+D)(C+D)
=(C+BD)(D+B’C)
=CD+BD+B’C
=CD+BD+B’C+B’B
=(B+C)D+(B+C)B’
=(B+C)(B’+D)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSU迦叶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值