17第十七章 格与布尔代数(代数结构)

第十七章 格与布尔代数

17.1 格

  • 代数格:设一个代数系统 < L , ⋁ , ⋀ > <L,\bigvee,\bigwedge> <L,,>,若其中 ⋁ \bigvee ⋀ \bigwedge 均满足三大代数特性(交换律,结合律,吸收律 a ⋁ ( b ⋀ a ) = a , b ⋁ ( a ⋀ b ) = b a\bigvee(b\bigwedge a)=a,b\bigvee(a\bigwedge b)=b a(ba)=a,b(ab)=b),则称 < L , ⋁ , ⋀ > <L,\bigvee,\bigwedge> <L,,> 为一个代数格,简称格。

    • 幂等律:设一个代数格 < L , ⋁ , ⋀ > <L,\bigvee,\bigwedge> <L,,>,有 a ∈ L a\in L aL,则 a ⋁ a = a , a ⋀ a = a a\bigvee a=a,a\bigwedge a=a aa=a,aa=a.

      证明: a ⋁ a = a ⋁ ( a ⋀ ( a ⋁ a ) ) = a a\bigvee a=a\bigvee(a\bigwedge (a\bigvee a))=a aa=a(a(aa))=a

  • 偏序格:设集合 L L L 上的一个偏序 ⪯ \preceq ,若对 ∀ a , b ∈ L \forall a,b\in L a,bL,子集 { a , b } \{a,b\} {a,b} L L L 中都有一个最大下界 glb ⁡ ( a , b ) \color{red}\operatorname{glb}(a,b) glb(a,b) 和一个最小上界 lub ⁡ ( a , b ) \color{red}\operatorname{lub}(a,b) lub(a,b),则称 < L , ⪯ > <L,\preceq> <L,> 为一个偏序格。

    例 \color{White}\colorbox{Fuchsia}{例} :偏序集 < 2 A , ⊆ > <2^A,\subseteq> <2A,> 为一个偏序格,称为幂集格

    证明:发现对 ∀ X , Y ∈ 2 A \forall X,Y\in 2 ^A X,Y2A,都有 glb ⁡ ( X , Y ) = X ⋂ Y , lub ⁡ ( X , Y ) = X ⋃ Y \operatorname{glb}(X,Y)=X\bigcap Y,\operatorname{lub}(X,Y)=X\bigcup Y glb(X,Y)=XY,lub(X,Y)=XY.

  • 相互联系:格的两种定义完全等价

    1. < L , ⋁ , ⋀ > <L,\bigvee,\bigwedge> <L,,> 是一个代数格,定义 a ⪯ b    ⟺    a ⋀ b = a , a ⋁ b = b \color{red}a\preceq b\iff a\bigwedge b=a,a\bigvee b=b abab=a,ab=b,则称 < L , ⪯ > <L,\preceq> <L,> 是一个偏序格。

      证明:

      1. < L , ⪯ > <L,\preceq> <L,>偏序集
        • 证自反性:由幂等律 a ⋀ a = a a\bigwedge a=a aa=a,因此 a ⪯ a a\preceq a aa
        • 证反对称性:设 a ⪯ b a\preceq b ab b ⪯ a b\preceq a ba,则由交换律有 a = a ⋀ b = b ⋀ a = b a=a\bigwedge b=b\bigwedge a=b a=ab=ba=b
        • 证传递性:设 a ⪯ b a\preceq b ab b ⪯ c b\preceq c bc,则由结合律有 a ⋀ c = ( a ⋀ b ) ⋀ c = a ⋀ ( b ⋀ c ) = a ⋀ b = a a\bigwedge c=(a\bigwedge b)\bigwedge c=a\bigwedge (b\bigwedge c)=a\bigwedge b=a ac=(ab)c=a(bc)=ab=a,即有 a ⪯ c a\preceq c ac
      2. < L , ⪯ > <L,\preceq> <L,>偏序格
        • 最大下界:由结合律有 x ⋀ ( x ⋀ y ) = x ⋀ y x\bigwedge (x\bigwedge y)=x\bigwedge y x(xy)=xy,故 x ⋀ y ⪯ x / y x\bigwedge y\preceq x/y xyx/y,即 x ⋀ y x\bigwedge y xy { x , y } \{x,y\} {x,y} 的一个下界。再设 c c c { x , y } \{x,y\} {x,y} 的任一下界,则由结合律有 c ⋀ ( x ⋀ y ) = ( c ⋀ x ) ⋀ y = c ⋀ y = c c\bigwedge(x\bigwedge y)=(c\bigwedge x)\bigwedge y=c\bigwedge y=c c(xy)=(cx)y=cy=c,故 c ⪯ x ⋀ y c\preceq x\bigwedge y cxy,即 x ⋀ y = glb ⁡ ( a , b ) x\bigwedge y=\operatorname{glb}(a,b) xy=glb(a,b).
        • 最小上界:同理
    2. < L , ⪯ > <L,\preceq> <L,> 是一个偏序格,定义 a ⋀ b = glb ⁡ ( a , b ) , a ⋁ b = lub ⁡ ( a , b ) \color{red}a\bigwedge b=\operatorname{glb}(a,b),a\bigvee b=\operatorname{lub}(a,b) ab=glb(a,b),ab=lub(a,b),则称 < L , ⋁ , ⋀ > <L,\bigvee,\bigwedge> <L,,> 是一个代数格。

17.2 子格与格同态

  • **子格 **:设 < L , ⋁ , ⋀ > <L,\bigvee,\bigwedge> <L,,> 是格, S S S L L L 的非空子集。若对 ∀ a , b ∈ S , a ⋀ b ∈ S , a ⋁ b ∈ S \forall a,b\in S,a\bigwedge b\in S,a\bigvee b\in S a,bS,abS,abS,则称 S S S L L L 的子格,记为 < S , ⋁ , ⋀ > <S,\bigvee ,\bigwedge> <S,,>

  • 对偶原理:设 < L , ⪯ > <L,\preceq> <L,> < L , ⪯ ′ > <L,\preceq'> <L,> 是两个偏序格, < L , ⋁ , ⋀ > <L,\bigvee,\bigwedge> <L,,> 是一个代数格

    • 对偶格:若 ⪯ \preceq ⪯ ′ \preceq' 逆关系,则称两个偏序格互为对偶的格

    • 对偶公式:设 E E E 是代数格中的一个公式,最大元和最小元分别表示为 1 , 0 1,0 1,0。将 E E E 中的 0 , 1 0,1 0,1 互换, ⋀ , ⋁ \bigwedge,\bigvee , 互换后得到的新公式 E ∗ E^* E 称为 E E E 的对偶公式。

      一个格中的公式 E E E 的对偶公式 E ∗ E^* E 也是对偶格中的一个公式

    • 对偶原理:设 X , Y X,Y X,Y 是格 < L , ⋁ , ⋀ > <L,\bigvee,\bigwedge> <L,,> 上的两个公式, X ∗ , Y ∗ X^*,Y^* XY 分别是相对应的对偶公式。若 X = Y X=Y X=Y,则 X ∗ = Y ∗ \color{red}X^*=Y^* X=Y

      • 序关系式:设 X , Y X,Y X,Y 是格 < L , ⋁ , ⋀ > <L,\bigvee,\bigwedge> <L,,> 上的两个公式, ⪯ \preceq 是对应的偏序。若 X ⪯ Y X\preceq Y XY,则 Y ∗ ⪯ X ∗ \color{red}Y^*\preceq X^* YX

        证明:
        X ⪯ Y    ⟺    X ⋀ Y = X 偏 序 定 义    ⟺    X ∗ ⋁ Y ∗ = X ∗ 对 偶 原 理    ⟺    Y ∗ ⪯ X ∗ 偏 序 定 义 \begin{aligned}X\preceq Y&\iff X\bigwedge Y=X&&偏序定义\\ &\iff X^*\bigvee Y^*=X^*&&对偶原理\\ &\iff Y^*\preceq X^*&&偏序定义 \\ \end{aligned} XYXY=XXY=XYX

      • 应用(结论):定理17.5,17.6

  • 格同态与格同构

    • 定义:设 < L , ⋁ , ⋀ > , < P , ⊕ , ⊗ > <L,\bigvee,\bigwedge>,<P,\oplus,\otimes> <L,,>,<P,,> 是两个格, f f f L L L P P P 的映射。若对 ∀ a , b ∈ L \forall a,b\in L a,bL,有
      f ( a ⋁ b ) = f ( a ) ⊕ f ( b ) f ( a ⋀ b ) = f ( a ) ⊗ f ( b ) f(a\bigvee b)=f(a)\oplus f(b)\\ f(a\bigwedge b)=f(a)\otimes f(b) f(ab)=f(a)f(b)f(ab)=f(a)f(b)
      则称 f f f 是从格 < L , ⋁ , ⋀ > <L,\bigvee, \bigwedge> <L,,> < P , ⊕ , ⊗ > <P,\oplus,\otimes> <P,,>格同态。特别的,当 f f f 是双射时,称为格同构

      实例 \color{White}\colorbox{Fuchsia}{实例} :设 D 6 D_6 D6 表示 6 6 6 的正因子集,证明因子格 < D 6 , ∣ > <D_6,|> <D6,> 和幂集格 < 2 { a , b } , ⊆ > <2^{\{a,b\}},\subseteq> <2{a,b},> 是格同构的
      定 义 映 射 f : D 6 → 2 { a , b } , 使 得 f ( 1 ) = ∅ , f ( 2 ) = { a } , f ( 3 ) = { b } , f ( 6 ) = { a , b } 注 意 < D 6 , ∣ > 对 应 运 算 lcm ⁡ 和 gcd ⁡ , < 2 { a , b } , ⊆ > 对 应 运 算 ⋃ , ⋂ 验 证 : f ( lcm ⁡ ( 2 , 3 ) ) = f ( 6 ) = { a , b } = { a } ⋃ { b } = f ( 2 ) ⋃ f ( 3 ) f ( gcd ⁡ ( 2 , 3 ) ) = f ( 1 ) = ∅ = { a } ⋂ { b } = f ( 2 ) ⋂ f ( 3 ) . . . 此 外 发 现 f 是 双 射 , 于 是 < D 6 , ∣ > 和 < 2 { a , b } , ⊆ > 是 格 同 构 的 两 个 格 。 定义映射 f:D_6\rightarrow 2^{\{a,b\}},使得f(1)=\empty,f(2)=\{a\},f(3)=\{b\},f(6)=\{a,b\}\\ 注意<D_6,|>对应运算\operatorname{lcm}和\gcd,<2^{\{a,b\}},\subseteq>对应运算\bigcup,\bigcap\\ 验证:\color{red}f(\operatorname{lcm}(2,3))=f(6)=\{a,b\}=\{a\}\bigcup \{b\}=f(2)\bigcup f(3)\\ \color{red}f(\gcd(2,3))=f(1)=\empty=\{a\}\bigcap \{b\}=f(2)\bigcap f(3)\\ ...\\ 此外发现f是双射,于是<D_6,|>和<2^{\{a,b\}},\subseteq>是格同构的两个格。 f:D62{a,b},使f(1)=,f(2)={a},f(3)={b},f(6)={a,b}<D6,>lcmgcd,<2{a,b},>,:f(lcm(2,3))=f(6)={a,b}={a}{b}=f(2)f(3)f(gcd(2,3))=f(1)=={a}{b}=f(2)f(3)...f<D6,><2{a,b},>

    • 定理:设 < L , ⋁ , ⋀ > , < P , ⊕ , ⊗ > <L,\bigvee,\bigwedge>,<P,\oplus,\otimes> <L,,>,<P,,> 两个格上的偏序分别为 ⪯ \preceq ⊆ \subseteq

      • 格同态 ⟹ \Longrightarrow 保序(保序定理) f f f 是从格 < L , ⋁ , ⋀ > <L,\bigvee,\bigwedge> <L,,> 到格 < P , ⊕ , ⊗ > <P,\oplus,\otimes> <P,,> 的同态 ⟹ \color{red}\Longrightarrow ∀ a , b ∈ L \forall a,b\in L a,bL,若 a ⪯ b a\preceq b ab,则 f ( a ) ⊆ f ( b ) f(a)\subseteq f(b) f(a)f(b)

        例 \color{White}\colorbox{Fuchsia}{例} :设 L = { 1 , 2 , 3 , 6 } L=\{1,2,3,6\} L={1,2,3,6},在格 < L , ∣ > <L,|> <L,> 和格 < 2 L , ⊆ > <2^L,\subseteq> <2L,> 之间构造映射 f : L → 2 L f:L\rightarrow 2^L f:L2L,有 ∀ x ∈ L , f ( x ) = { y ∣ y ∈ L 且 y ∣ x } \forall x\in L,f(x)=\{y|y\in L且 y|x\} xL,f(x)={yyLyx}
        易 知 f ( 6 ) = { 1 , 2 , 3 , 6 } , f ( 3 ) = { 1 , 3 } , f ( 2 ) = { 1 , 2 } 有 当    x ∣ y    时 , f ( x ) ⊆ f ( y ) , 故 f 是 保 序 映 射 但 f 不 是 格 同 态 , 因 为    f ( lub ⁡ ( 2 , 3 ) ) = f ( 12 ) = { 1 , 2 , 3 , 6 } ≠ f ( 2 ) ⋃ f ( 3 ) = { 1 , 2 , 3 } 易知 f(6)=\{1,2,3,6\},f(3)=\{1,3\},f(2)=\{1,2\}\\ 有当\;x|y\;时,f(x)\subseteq f(y),故f是保序映射\\ 但f不是格同态,因为\; f(\operatorname{lub}(2,3))=f(12)=\{1,2,3,6\}\ne f(2)\bigcup f(3)=\{1,2,3\} f(6)={1,2,3,6},f(3)={1,3},f(2)={1,2}xy,f(x)f(y),ff,f(lub(2,3))=f(12)={1,2,3,6}=f(2)f(3)={1,2,3}

        说明满足保序性不能保证 f f f 是格同态的

      • 格同构    ⟺    \iff 保序:双射 f f f 是从格 < L , ⋁ , ⋀ > <L,\bigvee,\bigwedge> <L,,> 到格 < P , ⊕ , ⊗ > <P,\oplus,\otimes> <P,,> 的同构    ⟺    \color{red}\iff ∀ a , b ∈ L \forall a,b\in L a,bL a ⪯ b a\preceq b ab f ( a ) ⊆ f ( b ) f(a)\subseteq f(b) f(a)f(b) 等价。

17.3 分配格与有补格

  • 分配格

    • 定义:设 < L , ⋁ , ⋀ > <L,\bigvee,\bigwedge> <L,,> 是格,若对 ∀ a , b , c ∈ L \forall a,b,c\in L a,b,cL 都有
      a ⋁ ( b ⋀ c ) = ( a ⋁ b ) ⋀ ( a ⋁ c ) a ⋀ ( b ⋁ c ) = ( a ⋀ b ) ⋁ ( a ⋀ c ) a\bigvee(b\bigwedge c)=(a\bigvee b)\bigwedge(a\bigvee c)\\ a\bigwedge(b\bigvee c)=(a\bigwedge b)\bigvee(a\bigwedge c)\\ a(bc)=(ab)(ac)a(bc)=(ab)(ac)
      则称 < L , ⋁ , ⋀ > <L,\bigvee,\bigwedge> <L,,>分配格(满足分配律)。

      例 \color{White}\colorbox{Fuchsia}{例}

    • 五点格中的两个非分配格

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值