拉普拉斯性质1的证明方法

拉普拉斯性质1是计算多元函数的拉普拉斯算子的一个重要工具,它可以将一个多元函数的拉普拉斯算子展开成一系列关于各个自变量的偏导数之和,从而简化计算。

具体来说,设 f ( x 1 , x 2 , … , x n ) f(x_1,x_2,\ldots,x_n) f(x1,x2,,xn) n n n 元函数,则拉普拉斯性质1可以表示为:

Δ f = ∑ i = 1 n ∂ 2 f ∂ x i 2 \Delta f = \sum_{i=1}^{n}\frac{\partial^2 f}{\partial x_i^2} Δf=i=1nxi22f

其中, Δ f \Delta f Δf 表示 f f f 的拉普拉斯算子,也即:

Δ f = ∂ 2 f ∂ x 1 2 + ∂ 2 f ∂ x 2 2 + ⋯ + ∂ 2 f ∂ x n 2 \Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \cdots + \frac{\partial^2 f}{\partial x_n^2} Δf=x122f+x222f++xn22f

在上述公式中, ∂ \partial 表示偏导数, ∂ 2 \partial^2 2 表示二阶偏导数, x i x_i xi 表示第 i i i 个自变量。

拉普拉斯性质1的证明可以通过对拉普拉斯算子的定义进行推导得到。具体来说,我们可以将拉普拉斯算子展开为:

Δ f = ∇ 2 f   = ∑ i = 1 n ∂ 2 f ∂ x i 2 \begin{aligned} \Delta f &= \nabla^2 f \ &= \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} \end{aligned} Δf=2f =i=1nxi22f

其中, ∇ 2 \nabla^2 2 表示拉普拉斯算子的向量形式,即:

∇ 2 = ∇ ⋅ ∇ = ∂ 2 ∂ x 1 2 + ∂ 2 ∂ x 2 2 + ⋯ + ∂ 2 ∂ x n 2 \nabla^2 = \nabla \cdot \nabla = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \cdots + \frac{\partial^2}{\partial x_n^2} 2==x122+x222++xn22

其中, ∇ \nabla 表示梯度算子, ⋅ \cdot 表示向量的点积运算。

因此,拉普拉斯性质1得证。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值