[线性控制理论]关于Laplace变换中求导运算的结果推导

设处处可导的时域函数 x ( t ) x(t) x(t),那么该函数的 L a p l a c e Laplace Laplace变换为:
X ( s ) = ∫ 0 + ∞ x ( t ) e − s t d t X(s)=\int_0^{+\infty}x(t)e^{-st}dt X(s)=0+x(t)estdt
x ( t ) x(t) x(t)的一阶导数的拉氏变换为 X 1 ( s ) X_1(s) X1(s),那么:
X 1 ( s ) = ∫ 0 + ∞ x ′ ( t ) e − s t d t = ∫ 0 + ∞ [ x ( t ) e − s t ] ′ d t − ∫ 0 + ∞ x ( t ) [ e − s t ] ′ d t X_1(s)=\int_0^{+\infty}x^{'}(t)e^{-st}dt=\int_0^{+\infty}[x(t)e^{-st}]^{'}dt-\int_0^{+\infty}x(t)[e^{-st}]^{'}dt X1(s)=0+x(t)estdt=0+[x(t)est]dt0+x(t)[est]dt
整理后得到:
X 1 ( s ) = s X ( s ) − x ( 0 ) X_1(s)=sX(s)-x(0) X1(s)=sX(s)x(0)
通过归纳可得到x(t)的n阶导数的拉氏变换(记为 X n ( s ) X_n(s) Xn(s))为:
X n ( s ) = s n X ( s ) − [ s n − 1 x ( 0 ) + s n − 2 x ( 1 ) ( 0 ) + ⋯ + s x ( n − 2 ) ( 0 ) + x ( n − 1 ) ( 0 ) ] X_n(s)=s^nX(s)-[s^{n-1}x(0)+s^{n-2}x^{(1)}(0)+\cdots+sx^{(n-2)}(0)+x^{(n-1)}(0)] Xn(s)=snX(s)[sn1x(0)+sn2x(1)(0)++sx(n2)(0)+x(n1)(0)]
故在线性控制系统的分析过程中,要注意 x ( t ) x(t) x(t)初值对运动方程解的影响。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值