设处处可导的时域函数
x
(
t
)
x(t)
x(t),那么该函数的
L
a
p
l
a
c
e
Laplace
Laplace变换为:
X
(
s
)
=
∫
0
+
∞
x
(
t
)
e
−
s
t
d
t
X(s)=\int_0^{+\infty}x(t)e^{-st}dt
X(s)=∫0+∞x(t)e−stdt
设
x
(
t
)
x(t)
x(t)的一阶导数的拉氏变换为
X
1
(
s
)
X_1(s)
X1(s),那么:
X
1
(
s
)
=
∫
0
+
∞
x
′
(
t
)
e
−
s
t
d
t
=
∫
0
+
∞
[
x
(
t
)
e
−
s
t
]
′
d
t
−
∫
0
+
∞
x
(
t
)
[
e
−
s
t
]
′
d
t
X_1(s)=\int_0^{+\infty}x^{'}(t)e^{-st}dt=\int_0^{+\infty}[x(t)e^{-st}]^{'}dt-\int_0^{+\infty}x(t)[e^{-st}]^{'}dt
X1(s)=∫0+∞x′(t)e−stdt=∫0+∞[x(t)e−st]′dt−∫0+∞x(t)[e−st]′dt
整理后得到:
X
1
(
s
)
=
s
X
(
s
)
−
x
(
0
)
X_1(s)=sX(s)-x(0)
X1(s)=sX(s)−x(0)
通过归纳可得到x(t)的n阶导数的拉氏变换(记为
X
n
(
s
)
X_n(s)
Xn(s))为:
X
n
(
s
)
=
s
n
X
(
s
)
−
[
s
n
−
1
x
(
0
)
+
s
n
−
2
x
(
1
)
(
0
)
+
⋯
+
s
x
(
n
−
2
)
(
0
)
+
x
(
n
−
1
)
(
0
)
]
X_n(s)=s^nX(s)-[s^{n-1}x(0)+s^{n-2}x^{(1)}(0)+\cdots+sx^{(n-2)}(0)+x^{(n-1)}(0)]
Xn(s)=snX(s)−[sn−1x(0)+sn−2x(1)(0)+⋯+sx(n−2)(0)+x(n−1)(0)]
故在线性控制系统的分析过程中,要注意
x
(
t
)
x(t)
x(t)初值对运动方程解的影响。
[线性控制理论]关于Laplace变换中求导运算的结果推导
于 2020-10-10 23:56:40 首次发布