决策树学习笔记Part_A

决策树学习PART_A

决策树是比赛与工作常用的分类预测算法,主要应用在二分类问题,该模型主要包含三种算法思想:分别是ID3、C4.5、CART算法

为了更好理解决策树,首先需要引入知识:
信息熵、条件熵(条件概率、联合分布)

信息熵

信息熵:热力学中的热熵是表示分子状态混乱程度的物理量。香农用信息熵的概念来描述信源的不确定度。
简单理解就是度量信息的混乱程度,从概率上理解就是在一个样本空间理,随机进行一次抽样,我有可能抽到不同样本的情况多,就说明该样本空间不同的样本类别多,对应的是这个空间信息混乱程度高,信息熵大。

  • 数学度量
    信息熵主要作用就是为了度量混乱度,所以引入自信息
    在这里插入图片描述

ID3(信息增益)算法思想

信息熵越大,从而样本纯度越低。
ID3 算法的核心思想就是以信息增益来度量特征选择,选择信息增益最大(可以简单理解为信息熵下降最快)的特征进行分裂。
其大致步骤为:

  1. 初始化特征集合和数据集合;计算数据集合信息熵和所有特征的条件熵,选择信息增益最大的特征作为当前决策节点;
    在这里插入图片描述
  2. 更新数据集合和特征集合(删除被选用的特征,并按照特征值来划分不同分支的数据集合);
  3. 重复 2,3两步,若子集值包含单一特征,则为分支叶子节点。

ID3算法简单易懂,但存在一个值得思考的问题在于
假定有一个特征,它的值为唯一值,同时对应这唯一的类别(n对n),这时候会导致决策树只要使用这个特征,就能得到最好的分类,但明显这不是我们想要的结果,所以有了C4.5算法的出现。

C4.5(信息增益率)算法思想

主要引进了对于解决某些特征过多取值,从而该特征进行计算信息增益偏高,导致信息增益偏向此类特征的问题;
在这里插入图片描述
H A ( D ) H_A(D) HA(D)可以简单理解为属性A取值数目越多,该值就会越大;需要注意的是,增益率则可能偏好于取值数目较少的特征,所以C4.5常用的是:先从信息增益取出高于平均水平的属性,再通过信息增益率选择最终的划分特征。

CART(基尼系数)算法思想

该算法主要优化计算,信息增益、信息增益率都含有对数运算;而且CART算法可以构建分类树与回归树(MSE\MAE)

  • gini系数(基尼指数代表了模型的不纯度,基尼系数越小,不纯度越低,特征越好)
    在这里插入图片描述
    个人理解:样本空间中随机抽取两个样本,这两个样本不一致的概率,如果概率很大,说明分出来的样本空间不纯度较高。

模型泛化及过拟合问题

如果对于上面三种算法进行迭代划分数据集,不进行相应的惩罚机制,无限制地划分,最终结果都会用上所有可以使用的特征,最后得出的分类数据集有可能数量很少,虽然很纯,但对于学习任务来说,其泛化能力将大幅度下降,只能完美适配训练数据。

所以针对这样的问题,决策树主要有两种优化方法:预剪枝与后剪枝;

  1. 预剪枝
    在学习任务中,有训练集与验证集,每一次进行特征划分产生的子树,可以通过验证集对本次子树的节点进行评估,如果精度有提升则基于该叶子节点进行下一步的划分,如果没有提升则终止该节点的划分。
  2. 后剪枝(MCCP过程)
    后剪枝则是先进行树的生成,从最深的子树进行遍历,比较将子树替换为叶子节点,精度是否有提升,如果有提升则替换为叶子节点,减少树的深度,从而简化模型,增加其泛化能力。

心得体会

主要是记录自己学习的过程,进一步梳理自己对决策树的认识,从度量信息混乱程度的信息熵开始,到决策树3个核心算法的理解,算法之间层层递进,解决与优化相应的问题;更深刻地认识到算法与数学之间的联系,数学理解的底层架构,所有的形象化解释都是严谨的数学推理,涉及期望、条件分布、联合分布、数学求解等方法,希望自己能继续坚持!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值