pix2pix算法提升的一些总结

由于pix2pix 对于高清图像的处理存在不稳定和生成器生成的图像质量不高等问题,由此分别在生成器、鉴别器和对抗损失函数等方面做出了如下改善。

  • Coarse-to-fine generator

将原本的生成器分为G1,G2两个生成器,G1是全局生成网络,G2是局部增强网络。请添加图片描述

如图所示,G2最后接受的为G1和G2映射的特征总和。

Our global generator is built on the architecture proposed
by Johnson et al. [22], which has been proven successful
for neural style transfer on images up to 512 × 512. It consists of 3 components: a convolutional front-end G(F ) 1, a set of residual blocks G® 1 [18], and a transposed convolutional back-end G(B) 1
. A semantic label map of resolution 1024×512 is passed through the 3 components sequentially to output an image of resolution 1024 × 512.

G1 是全局生成器,由三部分组成G(F)卷积前项,剩余块G(R),卷积后项G(B)

输入为清晰度为1024512的图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值