ubuntu20.04独显和集显切换安装英伟达驱动

先说设备参数:华硕天选2,配备intel集显和3060显卡,ubuntu的内核是5.13。

我装了两天的英伟达驱动没有成功,在淘宝上找了个大哥给我一小时装完了。最重要的是一句选择显卡的代码。

重装系统后我直接给他了电脑,接下来是流程:

sudo apt-get update     #更新系统软件
sudo apt-get upgrade
ubuntu-drivers devices  #查看支持的驱动,我是支持470和510
sudo apt-get install nvidia-driver-470
sudo prime-select nvidia   #这一句是重点,来回切换独显和集显
sudo reboot   #重启后生效

我试了一下,可以来回切换独显和集显,独显耗电大。切换intel显卡就用

sudo prime-select intel

另外,顺便讲一下conda换源:

给conda换源:用vim .condarc在home目录下创建一个源文件,粘贴anaconda | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror中的文字,后conda clean -i清理一下缓存,安装pytorch即可

接下来继续安装CUDA和CUDNN

网上的资料比较详细了,我只写我在其中有遇到的问题。

1. CUDA版本尽量与pytorch的版本一致。我要运行Swin Transform,在编译apex时提示我下vy一致,于是我卸载了之前安装的CUDA11.4又安装了11.1。更换CUDA版本的过程很曲折,并且把驱动也给弄坏了,于是我全部卸载了CUDA和英伟达驱动从头开始安装。

sudo apt-get remove --purge nvidia*
sudo apt-get --purge remove nvidia*
sudo apt-get autoremove
sudo apt-get --purge remove "*cublas*" "cuda*"
sudo apt-get --purge remove "*nvidia*"

2.CUDA的安装版本选用x86_64的.run文件。因为过程中会让我们选择是否安装驱动,而驱动在之前已经安装了,所以一定不要选择安装这个驱动(其他博主也说了)。

3.CUDNN这就比较有意思了,让我白白花了好多时间。以前的版本是运行:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

但现在不是了,是运行:

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

参考这个链接:

在从看Linux/Ubuntu判断cudnn安装成功没反应cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2_江南蜡笔小新的博客-CSDN博客

### 配置 Ubuntu 上的深度学习环境 #### 更换国内源 为了加速软件包其他资源的下载速度,建议更换为国内镜像源。编辑 `/etc/apt/sources.list` 文件并替换为阿里云或其他国内源的内容[^1]。 #### GPU驱动安装 确保系统已更新至最新状态后,通过官方推荐的方式安装NVIDIA驱动程序。对于Ubuntu 20.04 LTS版本来说,可以通过如下命令来完成GPU驱动安装: ```bash sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt-get update ubuntu-driver autoinstall ``` 这一步骤能够保证获取最新的稳定版驱动器支持。 #### Anaconda 安装 选择合适的Anaconda发行版进行本地化部署。根据最近的信息,可以从清华大学开源软件镜像站下载适用于Linux系统的Anaconda3安装脚本 `Anaconda3-2024.02-1-Linux-x86_64.sh ``` 此操作将引导用户完成整个设置流程,并允许自定义安装路径等选项[^4]。 #### PyTorch CPU 版本安装 如果不需要利用GPU加速计算,则可以直接使用Conda工具链快速建立仅含PyTorch库的基础开发环境: ```bash conda create --name pytorch_cpu python=3.9 conda activate pytorch_cpu conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 上述指令创建了一个名为`pytorch_cpu`的新虚拟环境,并在其内部安装了针对CPU优化过的PyTorch及相关组件。 #### CUDA cuDNN 安装 对于希望启用CUDA功能的支持者而言,在成功配置好硬件层面之后还需要额外引入相应的运行时库。具体做法是从英伟达官方网站挑选与操作系统匹配度最高的cuDNN Runtime Library版本(例如面向Ubuntu 18.04设计的.deb格式文件),并通过APT包管理系统实施自动化部署[^2]: ```bash wget https://developer.download.nvidia.com/compute/redist/cudnn/v8.x.y.z/.../libcudnn8_x_y_z_cuda11.2_wsl_ugly_workaround_amd64.deb sudo dpkg -i libcudnn8*.deb ``` 注意这里假设读者已经完成了前期准备工作——即正确设置了CUDA Toolkit以及关联的依赖关系。 #### PyTorch-GPU 版本安装 一旦确认所有必要的前置条件均已满足,即可着手准备构建完整的PyTorch框架实例。此时应优先考虑采用预编译形式发布的二进制分发包,因为它们通常包含了经过充分测试验证的最佳实践组合方案: ```bash conda create --name pytorch_gpu python=3.9 conda activate pytorch_gpu conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 这段代码片段旨在设立一个新的Python解释器沙盒空间(`pytorch_gpu`),随后加载由社区维护的一系列科学计算扩展模块及其配套的数据处理接口合。 #### TensorFlow 安装 最后介绍TensorFlow的安装方法。考虑到不同应用场景下的特殊需求差异较大,因此提供了多种灵活多变的选择途径供开发者参考借鉴。最简便易行的办法莫过于借助于Miniconda或Full Conda平台实现一键式成体验: ```bash conda create --name tensorflow_env python=3.9 conda activate tensorflow_env pip install tensorflow ``` 以上步骤同样遵循类似的逻辑结构:先是划定独立的工作区间(tensorflow_env),接着激活该上下文以便后续操作生效;紧接着调用Pip工具负责搬运目标对象入库存储。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值