向量数据库个人笔记

这篇笔记探讨了向量检索技术,包括其在非结构化数据搜索中的优势。重点介绍了Milvus向量数据库,特别是与Llama_index和Towhee的结合使用,以及Faiss库的高效搜索能力。文章还提到了向量数据库的部署和Web UI集成,以及作者对于掌握基础算法和工程运用的见解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向量数据库个人笔记

传统的搜索比如Mysql用b+树索引, EleasticSearch索引倒排但本质上都是精确匹配 基于向量检索技术, 做相似度判断去寻找最相似, 可以更好的对图片, 视频等非结构化数据做检索, 玩的就是多维

什么是向量检索?

当查找与当前相似度最高的内容时, 向量搜索都可简化为这三个步骤

  1. 首先, 候选和已选内容都转为向量
  2. 遍历候选向量与已选向量做余弦相似度计算,然后按照计算出的余弦相似度排序
  3. 找出最相似的top N

Milvus向量数据库

Milvus&Llama_index

Llama_index结合milvus, 基于li的多种插件, 对于NLP十分擅长

# 使用llama_index读取数据
# 结合pylimvus导入到milvus数据库


#step1 - 读取数据为文档
from llama_index import download_loader
from glob import glob

MarkdownReader = download_loader("MarkdownReader")
markdownreader = MarkdownReader()

docs = []
for file in glob("./milvus-docs/site/en/**/*.md", recursive=True):
    docs.extend(markdownreader.load_data(file=file))


#step2 - 文档上传到数据库
from llama_index import GPTMilvusIndex
index = GPTMilvusIndex.from_documents(docs, host=HOST, port=PORT, overwrite=True)


#step3 - 查询数据
s = index.query("What is a collection?")
# Output:
### 在 MacOS 上使用 Docker 安装 Milvus 向量数据库 #### 系统需求 为了确保能够顺利安装 Milvus 向量数据库,用户的 Mac 笔记本需要满足以下最低硬件和软件要求[^1]: - **操作系统**: macOS 10.14 或更高版本(例如 macOS Monterey 12.7.6 已验证兼容)。 - **处理器**: 推荐双核 Intel i5 或更高级别的 CPU。 - **内存**: 至少 8 GB RAM。 - **存储空间**: 需要至少 256 GB 的可用磁盘空间。 #### 准备工作 在开始之前,需确认已正确安装 Docker Desktop 并完成启动。Docker 是运行 Milvus 所必需的环境工具,其安装指南可参考官方文档链接。 #### 下载 Milvus 单机版配置文件 通过以下方法获取 `docker-compose.yml` 文件用于部署单机版 Milvus 数据库[^2]: ```bash wget https://github.com/milvus-io/milvus/releases/download/v2.3.1/milvus-standalone-docker-compose.yml -O docker-compose.yml ``` 此命令会从 GitHub 发布页面下载指定版本的 Milvus 单机模式配置文件,并命名为 `docker-compose.yml`。 #### Python SDK 安装 为方便后续操作,建议安装 PyMilvus 库作为客户端接口与 Milvus 数据库交互。注意保持版本一致性,推荐使用的命令如下: ```bash pip install pymilvus==2.3.1 ``` #### 启动 Milvus 容器 利用刚刚准备好的 `docker-compose.yml` 文件来初始化并启动 Milvus 容器服务: ```bash docker-compose up -d ``` 上述指令将以分离模式后台运行容器实例。一旦该过程结束,可以通过检查当前活动中的 Docker 容器列表验证状态[^4]: ```bash docker ps -a ``` 当观察到新建立的容器处于正常运行(`Running`)状态下,则表明基础设置已完成;反之若发现异常退出情况 (`Exited`) ,则应进一步排查日志信息定位错误原因: ```bash docker logs <container_id> ``` #### 测试连接 最后一步是尝试访问刚搭建成功的 Milvus 实例。可以借助 attu 命令行工具实现快速测试连接功能[^3]: ```bash attu connect --host localhost --port 19530 ``` 如果一切无误的话,应该可以看到成功提示消息。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值