2021-09-11

Yolov3 对比 Yolov4

1.Mosaic 数据增强

2.Neck 使用了 FPN + PAN 的结构, PAN 区别于PANet中的PAN结构在这里插入图片描述

3.Neck 使用了SPP结构

在这里插入图片描述
在SPP论文中,作者发现使用SPP模块 ,比使用K*K的池化操作更加有效地增加主干特征的接收范围,可以显著分离上下文特征,

4.Dropblock

在这里插入图片描述
作者从Cutout数据增强方式中得到了启发, 发现在全连接网络中效果较好的Dropout ,在卷积层中的效果并不是那么好,因为卷积神经网络中的卷积、激活、池化中,池化操作依然可以从被丢弃的卷积的周围获取信息。

5. Relu —》 Mish 激活函数

在这里插入图片描述

6.Prediction创新,

(1).IOU_loss

在这里插入图片描述
在这里插入图片描述

  • IOU_LOss 会出现两个问题,问题1: 无法优化两个框想离的情况,此时不可导,问题2:如图。
(2)GIOU

在这里插入图片描述

(3) DIOU_Loss

在这里插入图片描述

我们发现,对于一个好的损失函数,需要可以较好的表示两个框的各种关系。
(4) CIOU

在这里插入图片描述

(5) nms对比DIOU_nms

在这里插入图片描述
我们发现对于左侧使用Nms的图片,有两个摩托车由于离得太近,导致有一个没有没检测出来 ,而使用DIOU_Nms则可以比较有效的解决遮挡的问题。

总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值