Yolov3 对比 Yolov4
1.Mosaic 数据增强
2.Neck 使用了 FPN + PAN 的结构, PAN 区别于PANet中的PAN结构
3.Neck 使用了SPP结构
在SPP论文中,作者发现使用SPP模块 ,比使用K*K的池化操作更加有效地增加主干特征的接收范围,可以显著分离上下文特征,
4.Dropblock
作者从Cutout数据增强方式中得到了启发, 发现在全连接网络中效果较好的Dropout ,在卷积层中的效果并不是那么好,因为卷积神经网络中的卷积、激活、池化中,池化操作依然可以从被丢弃的卷积的周围获取信息。
5. Relu —》 Mish 激活函数
6.Prediction创新,
(1).IOU_loss
- IOU_LOss 会出现两个问题,问题1: 无法优化两个框想离的情况,此时不可导,问题2:如图。
(2)GIOU
(3) DIOU_Loss
我们发现,对于一个好的损失函数,需要可以较好的表示两个框的各种关系。
(4) CIOU
(5) nms对比DIOU_nms
我们发现对于左侧使用Nms的图片,有两个摩托车由于离得太近,导致有一个没有没检测出来 ,而使用DIOU_Nms则可以比较有效的解决遮挡的问题。