4.24 构建onnx结构模型-Slice

前言

构建onnx方式通常有两种:
1、通过代码转换成onnx结构,比如pytorch —> onnx
2、通过onnx 自定义结点,图,生成onnx结构

本文主要是简单学习和使用两种不同onnx结构,
下面以 Slice 结点进行分析
在这里插入图片描述

方式

方法一:pytorch --> onnx

暂缓,主要研究方式二

方法二: onnx

import onnx
from onnx import helper
from onnx import TensorProto

# 创建一个空的ONNX图
graph = helper.make_graph(nodes=[], name='Slice_Graph', inputs=[], outputs=[])

# 创建Slice节点的输入参数
input_data = helper.make_tensor_value_info('input_data', TensorProto.FLOAT, [3, 4, 5])  # 输入数据张量的形状为[3, 4, 5]
starts = helper.make_tensor('starts', TensorProto.INT64, [3], [0, 1, 2])  # 切片起始位置
ends = helper.make_tensor('ends', TensorProto.INT64, [3], [2, 3, 4])  # 切片结束位置

graph.input.extend([input_data])
graph.initializer.extend([starts, ends])

# 创建Slice节点
slice_node = helper.make_node('Slice', ['input_data', 'starts', 'ends'], ['output'], name='Slice_Node')

# 添加Slice节点到图中
graph.node.extend([slice_node])

# 创建Slice节点的输出参数
output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [2, 2, 2])  # 输出张量形状为[2, 2, 2],表示切片后的子张量形状
graph.output.extend([output])

# 创建ONNX模型
model = helper.make_model(graph, producer_name='ONNX_Slice_Example')

# 保存ONNX模型到文件
onnx.save(model, 'slice_model.onnx')


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nsq_ai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值