咒语和药水的成功对数

题目描述

给你两个正整数数组 spells 和 potions ,长度分别为 n 和 m ,其中 spells[i] 表示第 i 个咒语的能量强度,potions[j] 表示第 j 瓶药水的能量强度。

同时给你一个整数 success 。一个咒语和药水的能量强度 相乘 如果 大于等于 success ,那么它们视为一对 成功 的组合。

请你返回一个长度为 n 的整数数组 pairs,其中 pairs[i] 是能跟第 i 个咒语成功组合的 药水 数目。

示例 1:

输入:spells = [5,1,3], potions = [1,2,3,4,5], success = 7
输出:[4,0,3]
解释:
- 第 0 个咒语:5 * [1,2,3,4,5] = [5,10,15,20,25] 。总共 4 个成功组合。
- 第 1 个咒语:1 * [1,2,3,4,5] = [1,2,3,4,5] 。总共 0 个成功组合。
- 第 2 个咒语:3 * [1,2,3,4,5] = [3,6,9,12,15] 。总共 3 个成功组合。
所以返回 [4,0,3] 。

示例 2:

输入:spells = [3,1,2], potions = [8,5,8], success = 16
输出:[2,0,2]
解释:
- 第 0 个咒语:3 * [8,5,8] = [24,15,24] 。总共 2 个成功组合。
- 第 1 个咒语:1 * [8,5,8] = [8,5,8] 。总共 0 个成功组合。
- 第 2 个咒语:2 * [8,5,8] = [16,10,16] 。总共 2 个成功组合。
所以返回 [2,0,2] 。

提示:

  • n == spells.length
  • m == potions.length
  • 1 <= n, m <= 105
  • 1 <= spells[i], potions[i] <= 105
  • 1 <= success <= 1010

解决思路

1. 预处理

首先,我们对药水数组进行排序。这是因为排序后,可以利用二分搜索快速定位到满足条件的最小药水,从而加速配对过程。排序是一个 O(N log N) 的操作,其中 N 是药水数组的长度。

2. 遍历法术数组

对于每个法术,我们需要找到与之配对后能满足成功条件的药水数量。这可以通过以下步骤实现:

a. 计算每个法术所需的最小药水效力

对于每个法术 spell,计算出能使乘积大于或等于 success 的最小药水效力 t。计算方法是:

long long t = ceil((double)success / spell);

这里使用 ceil 函数确保即使 success / spell 不是整数时也能向上取整,满足 spell * potion >= success 的条件。

b. 使用二分搜索找到第一个满足条件的药水

利用 lower_bound 函数在已排序的药水数组中查找第一个大于或等于 t 的药水。这是一个 O(log N) 的操作。lower_bound 返回一个迭代器,指向满足条件的第一个药水,如果所有药水都不满足条件,则返回 end()

c. 计算成功的配对数量

由于 lower_bound 返回的迭代器之后的所有药水都满足条件(因为数组已排序),我们可以通过计算从该迭代器到数组末尾的药水数量来得到成功的配对数量:

int successful_count = potions.size() - (idx - potions.begin());

这里,idx - potions.begin() 给出满足条件的第一个药水的位置,从而 potions.size() - (idx - potions.begin()) 给出从这个位置到数组末尾的药水数量。

3. 收集结果

将每次计算得到的成功配对数量存储在结果数组中,并返回。

代码实现

class Solution {
public:
    vector<int> successfulPairs(vector<int>& spells, vector<int>& potions, long long success) {
        sort(potions.begin(), potions.end());
        vector<int> ans;
        for (auto spell: spells) {
            long long t = ceil((double)success / spell);
            auto idx = lower_bound(potions.begin(), potions.end(), t);
            ans.push_back(potions.size() - (idx - potions.begin()));
        }
        return ans;
    }
};
### Stable Diffusion Prompt 技巧 Stable Diffusion 的提示词(Prompt)设计对于生成高质量图像至关重要。以下是关于如何优化构建有效提示词的一些技巧: #### 控制长度与复杂度 为了获得最佳效果,建议保持提示词的简洁性逻辑性。通常情况下,超过75个单词的提示词可能显得冗余并降低模型的理解能力[^2]。因此,在编写提示词时应注重精炼表达。 #### 利用权重调整元素比例 通过引入冒号分隔的比例参数可以精细调节不同概念之间的相对重要程度。例如,“[man:woman:0.1]”表示男性特征占据主导地位而女性特质仅占很小部分;随着数值增大至“[man:woman:0.9]”,则逐渐向后者倾斜[^4]。这种机制允许创作者灵活操控画面主体属性及其变化趋势。 #### 结合具体硬件术语增强细节描述 当希望呈现涉及计算机设备场景的画面时,可适当加入专业化词汇来提升渲染精度。“Computer”, “scr.e” (可能是屏幕相关缩写), “audio controller”, “indicator”, “keypad”, “mouse”, “display”等均属于此类范畴[^3]。这些精确指向性的名词有助于引导AI更准确地捕捉目标对象特性。 #### 自动生成工具辅助创作过程 如果遇到难以构思理想表述的情况,则不妨尝试借助外部资源完成初步草稿拟定工作。比如利用像ChatGPT这样的大型语言模型输入核心关键词请求扩展说明内容即可快速得到一份较为完善的初版方案供后续修改完善之用[^1]。 ```python # 示例Python脚本用于调用API自动生成Prompts import requests def generate_prompt(api_key, keywords): url = f"https://example.com/api/generate?api_key={api_key}&keywords={','.join(keywords)}" response = requests.get(url) if response.status_code == 200: return response.json()['generated_text'] else: raise Exception(f"Error generating prompt: {response.text}") if __name__ == "__main__": api_key = 'your_api_key_here' keywords = ['fantasy', 'landscape', 'mountain'] try: generated_prompt = generate_prompt(api_key, keywords) print(generated_prompt) except Exception as e: print(e) ``` 上述代码片段展示了一种方法论框架——即通过编程接口自动化获取定制化prompts从而节省人工成本同时也提高了效率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LIHAORAN99

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值