吴恩达机器学习3-线性代数回顾

吴恩达机器学习3-线性代数回顾

涉及到的都是很基本的线性代数知识,一看就会。

  1. 矩阵的加法
    ​ 设 A = ( a i j ) , B = ( b i j ) A=\left(a_{i j}\right), B=\left(b_{i j}\right) A=(aij),B=(bij) 是两个 m × n m \times n m×n 矩阵, 则 m × n m \times n m×n 矩阵 C = ( c i j ) = a i j + b i j C=\left(c_{i j}\right)=a_{i j}+b_{i j} C=(cij)=aij+bij 称为矩阵 A A A B B B 的和, 记为 A + B = C A+B=C A+B=C

  2. 矩阵的数乘
    A = ( a i j ) A=\left(a_{i j}\right) A=(aij) m × n m \times n m×n 矩阵, k k k 是一个常数, 则 m × n m \times n m×n 矩阵 ( k a i j \left(k a_{i j}\right. (kaij 称为数 k k k 与矩阵 A A A 的数乘, 记 为 k A k A kA

  3. 矩阵的乘法
    A = ( a i j ) A=\left(a_{i j}\right) A=(aij) m × n m \times n m×n 矩阵, B = ( b i j ) B=\left(b_{i j}\right) B=(bij) n × s n \times s n×s 矩阵, 那么 m × s m \times s m×s 矩阵 C = ( c i j ) C=\left(c_{i j}\right) C=(cij), 其中 c i j = c_{i j}= cij= a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i n b n j = ∑ k = 1 n a i k b k j a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}=\sum_{k=1}^{n} a_{i k} b_{k j} ai1b1j+ai2b2j++ainbnj=k=1naikbkj 称为 A B A B AB 的乘积, 记为 C = A B C=A B C=AB

  4. 矩阵乘法的性质:
    矩阵的乘法不满足交换律:𝐴 × 𝐵 ≠ 𝐵 × 𝐴
    矩阵的乘法满足结合律。即:𝐴 × (𝐵 × 𝐶) = (𝐴 × 𝐵) × 𝐶
    单位矩阵:𝐼 代表单位矩阵,从左上角到右下角的对角线(称为主对角线)上的元素均为 1 以外全都为 0。
    对于单位矩阵,有𝐴𝐼 = 𝐼𝐴 = 𝐴、𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼

  5. 矩阵的逆:
    矩阵的逆:如矩阵𝐴是一个𝑚 × 𝑚矩阵(方阵),如果有逆矩阵,则:𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼
    Matlab实现:inv(A)

  6. 矩阵的转置性质:
    ( A ± B ) T = A T ± B T ( A × B ) T = B T × A T ( A T ) T = A ( K A ) T = K A T \begin{gathered} (A \pm B)^{T}=A^{T} \pm B^{T} \\ (A \times B)^{T}=B^{T} \times A^{T} \\ \left(A^{T}\right)^{T}=A \\ (K A)^{T}=K A^{T} \end{gathered} (A±B)T=AT±BT(A×B)T=BT×AT(AT)T=A(KA)T=KAT
    Matlab实现:A=A'

  7. 引入矩阵的作用:

举例:下图四个输入:房子尺寸,分别通过3个假设函数,得到各自的输出结果,通过矩阵可以轻松实现

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值