VAE——重构数字(Pytorch+mnist)

1、简介

  • VAE(变分自编码器)由编码器和解码器组成,但与AE不同的是,VAE通过引入隐变量并利用概率分布来学习潜在表示。
  • 本文利用VAE,输入数字图像。训练后,输入测试数字图像,重构生成新的数字图像。
    • 【注】本文案例需要输入才能生成输出,目标是重构,而不是生成。
  • 【注】输出的16张数字图像是输入的测试图像的第一批次。

2、代码

  • import torch
    import torch.nn as nn
    import torch.optim as optim
    import torchvision
    import torch.nn.functional as F
    from torchvision.utils import save_image
    import matplotlib.pyplot as plt
    
    
    # 变分自编码器
    class VAE(nn.Module):
        def __init__(self):
            super(VAE, self).__init__()
    
            # 编码器层
            self.fc1 = nn.Linear(input_size, 512)  # 编码器输入层
            self.fc2 = nn.Linear(512, latent_size)
            self.fc3 = nn.Linear(512, latent_size)
    
            # 解码器层
            self.fc4 = nn.Linear(latent_size, 512)  # 解码器输入层
            self.fc5 = nn.Linear(512, input_size)  # 解码器输出层
    
        # 编码器部分
        def encode(self, x):
            x = F.relu(self.fc1(x))  # 编码器的隐藏表示
            mu = self.fc2(x)  # 潜在空间均值
            log_var = self.fc3(x)  # 潜在空间对数方差
            return mu, log_var
    
        # 重参数化技巧
        def reparameterize(self, mu, log_var):  # 从编码器输出的均值和对数方差中采样得到潜在变量z
            std = torch.exp(0.5 * log_var)  # 计算标准差
            eps = torch.randn_like(std)  # 从标准正态分布中采样得到随机噪声
            return mu + eps * std  # 根据重参数化公式计算潜在变量z
    
        # 解码器部分
        def decode(self, z):
            z = F.relu(self.fc4(z))  # 将潜在变量 z 解码为重构图像
            return torch.sigmoid(self.fc5(z))  # 将隐藏表示映射回输入图像大小,并应用 sigmoid 激活函数,以产生重构图像
    
        # 前向传播
        def forward(self, x):  # 输入图像 x 通过编码器和解码器,得到重构图像和潜在变量的均值和对数方差
            mu, log_var = self.encode(x.view(-1, input_size))
            z = self.reparameterize(mu, log_var)
            return self.decode(z), mu, log_var
    
    
    # 使用重构损失和 KL 散度作为损失函数
    def loss_function(recon_x, x, mu, log_var):  # 参数:重构的图像、原始图像、潜在变量的均值、潜在变量的对数方差
        MSE = F.mse_loss(recon_x, x.view(-1, input_size), reduction='sum')  # 计算重构图像 recon_x 和原始图像 x 之间的均方误差
        KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())  # 计算潜在变量的KL散度
        return MSE + KLD  # 返回二进制交叉熵损失和 KLD 损失的总和作为最终的损失值
    
    
    if __name__ == '__main__':
        batch_size = 512  # 批次大小
        epochs = 30  # 学习周期
        sample_interval = 10  # 保存结果的周期
        learning_rate = 0.001  # 学习率
        input_size = 784  # 输入大小
        latent_size = 64  # 潜在空间大小
    
        # 载入 MNIST 数据集中的图片进行训练
        transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])  # 将图像转换为张量
    
        train_dataset = torchvision.datasets.MNIST(
            root="~/torch_datasets", train=True, transform=transform, download=True
        )  # 加载 MNIST 数据集的训练集,设置路径、转换和下载为 True
    
        train_loader = torch.utils.data.DataLoader(
            train_dataset, batch_size=batch_size, shuffle=True
        )  # 创建一个数据加载器,用于加载训练数据,设置批处理大小和是否随机打乱数据
    
        # 在使用定义的 AE 类之前,有以下事情要做:
        # 配置要在哪个设备上运行
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
        # 建立 VAE 模型并载入到 CPU 设备
        model = VAE().to(device)
    
        # Adam 优化器,学习率
        optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    
        # 训练
        for epoch in range(epochs):
            train_loss = 0
            for batch_idx, (data, _) in enumerate(train_loader):
                data = data.to(device)  # 将输入数据移动到设备(GPU 或 CPU)上
    
                optimizer.zero_grad()  # 进行反向传播之前,需要将优化器中的梯度清零,以避免梯度的累积
    
                # 重构图像 recon_batch、潜在变量的均值 mu 和对数方差 log_var
                recon_batch, mu, log_var = model(data)
    
                loss = loss_function(recon_batch, data, mu, log_var)  # 计算损失
                loss.backward()  # 计算损失相对于模型参数的梯度
                train_loss += loss.item()
    
                optimizer.step()  # 更新模型参数
    
            train_loss = train_loss / len(train_loader)  # # 计算每个周期的训练损失
            print('Epoch [{}/{}], Loss: {:.3f}'.format(epoch + 1, epochs, train_loss))
    
        # 用训练过的自编码器提取一些测试用例来重构
        test_dataset = torchvision.datasets.MNIST(
            root="~/torch_datasets", train=False, transform=transform, download=True
        )  # 加载 MNIST 测试数据集
    
        test_loader = torch.utils.data.DataLoader(
            test_dataset, batch_size=16, shuffle=False
        )  # 创建一个测试数据加载器
    
        test_examples = None
    
        # 通过循环遍历测试数据加载器,获取一个批次的图像数据
        with torch.no_grad():  # 使用 torch.no_grad() 上下文管理器,确保在该上下文中不会进行梯度计算
            for batch_features in test_loader:  # 历测试数据加载器中的每个批次的图像数据
                batch_features = batch_features[0]  # 获取当前批次的图像数据
                test_examples = batch_features.view(-1, 784).to(
                    device)  # 将当前批次的图像数据转换为大小为 (批大小, 784) 的张量,并加载到指定的设备(CPU 或 GPU)上
                reconstruction, _, _ = model(test_examples)  # 使用训练好的自编码器模型对测试数据进行重构,即生成重构的图像
                break
    
        # 试着用训练过的自编码器重建一些测试图像
        with torch.no_grad():
            number = 16  # 设置要显示的图像数量
            plt.figure(figsize=(60, 10))  # 创建一个新的 Matplotlib 图形,设置图形大小为 (16, 16)
            for index in range(number):  # 遍历要显示的图像数量
                # 显示原始图
                ax = plt.subplot(2, number, index + 1)  # 行 列 位置
                plt.imshow(test_examples[index].cpu().numpy().reshape(28, 28))
                plt.gray()
                plt.axis('off')
    
                # 显示重构图
                ax = plt.subplot(2, number, index + 1 + number)
                plt.imshow(reconstruction[index].cpu().numpy().reshape(28, 28))
                plt.gray()
                plt.axis('off')
            plt.savefig('reconstruction_results.png')  # 保存图像
            plt.show()
  • 7
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 附件中的脚本和训练数据提供了一个基于PyTorch的手写数字识别模型的实现。该模型使用一个卷积神经网络(Convolutional Neural Network,CNN)来进行训练和预测。 首先,pytorch_mnist.py是一个Python脚本,包含了模型的网络结构、损失函数、优化器以及训练、验证和测试的流程。它通过加载mnist.npz中的数据集,对模型进行训练,并评估其在测试集上的性能。 mnist.npz是一个Numpy数组文件,其中包含了手写数字MNIST数据集。MNIST数据集是一个常用的机器学习数据集,包含了60000个用于训练的手写数字图像和10000个用于测试的手写数字图像。每个图像都是28x28像素大小的灰度图像,表示了0到9之间的一个数字mnist.npz文件将数据集分为了训练集、验证集和测试集,并存储为Numpy数组的形式。 脚本pytorch_mnist.py使用了PyTorch框架来定义了一个具有两个卷积层和三个全连接层的CNN模型。训练过程中,脚本使用了随机梯度下降(Stochastic Gradient Descent,SGD)算法来优化模型的权重参数,并使用交叉熵损失函数来度量模型的性能。脚本还实现了训练集上的批次循环、验证集上的性能评估和在测试集上的预测。 下载并运行这些脚本和数据,你将能够训练一个基于CNN的手写数字识别模型,并使用该模型对新的手写数字图像进行识别。这个模型可以作为一个简单但有效的数字识别工具,有助于学习和理解深度学习和计算机视觉领域的相关概念和技术。 ### 回答2: 附件提供了两个文件,分别是脚本文件pytorch_mnist.py和训练数据文件mnist.npz。 脚本文件pytorch_mnist.py是使用PyTorch框架编写的一个用于识别手写数字的神经网络模型。它通过卷积神经网络的方法对输入的手写数字图像进行分析和识别。脚本首先加载训练数据,然后定义了一个包含卷积层、池化层和全连接层的神经网络模型。接着使用随机梯度下降算法对模型进行训练,并实现了损失函数和优化器。最后,在一定的迭代次数下,保存了训练好的模型,在测试集上进行准确率的评估。 训练数据文件mnist.npz包含了用于训练和测试的手写数字图像数据集,其中包括了60,000个训练样本和10,000个测试样本。这些图像数据已经被处理成灰度图像,并存储在一个numpy数组中。可以通过读取这些数据,并分为训练集和测试集,用于模型的训练和评估。 总结起来,这个附件提供了一个使用PyTorch框架编写的手写数字识别模型的实现脚本以及相应的训练数据。通过使用这些资源,我们可以训练一个卷积神经网络模型来对手写数字图像进行识别,并通过测试数据评估该模型的准确率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

恣睢s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值