Shuffle Net_v1-shuffle_v2

ShuffleNet_v1与v2:模型架构、计算复杂度与优化
ShuffleNet是一种轻量级的深度学习模型,旨在降低计算复杂度,提高运行速度。ShuffleNet_v1通过组卷积和深度可分离卷积降低FLOPs,而ShuffleNet_v2则提出了新的设计准则,包括避免MAC碎片化、减少卷积层输入输出通道数不等的情况等,进一步优化了网络架构。 Shuffle操作在组间信息交互中起到关键作用,同时v2版还调整了1*1卷积和ReLU的位置,以提高效率。

目录

1.shuffle操作

2.计算复杂度对比:

3.Shuffle Net_v1模型架构以及参数设定

4.Shuffle Net_v1准确率

5.Shuffle Net_v2设计准则

6.Shuffle Net_v2网络架构改进

7.Shuffle Net_v2参数


shuffleNet结合ResNeXt的组卷积(GConv)与MobileNet的DW卷积。ResNeXt中1*1卷积占用了94.3%的Mdds,引入组卷积GConv减少计算复杂度。进行组卷积时,每组卷积独立进行,因此引入shuffle操作使得Group与Group间信息交互。

1.shuffle操作

2.计算复杂度对比:

 相较于ResNet,ShuffleNet_v1对1*1的卷积进行了分组,并且中间3*3卷积使用DW卷积,组数g=通道数m

3.Shuffle Net_v1模型架构以及参数设定

接下来看模型架构与各层的参数:

每个stage的第一个block步距stride为2,下个阶段输出channels翻倍(下采样)如结构图(c)。bottleneck(中间3*3DW卷积)的通道数为输出通道的1/4。

4.Shuffle Net_v1准确率

 shufflenet_v2

5.Shuffle Net_v2设计准则

  shufflenet_v2提出了四条高效设计网络的指标,

FLOPs是间接指标,而速度才是模型计算快慢的直接指标,MAC(内存占用)、平台、并行度都是影响模型快慢的指标,提出四条设计高效网络的准则:

(1)卷积层的输入特征矩阵与输出特征矩阵通道数相等时,MAC最小。

(2)当GConv的group增大时(FLOPs不变),MAC也增大。

(3)网络的碎片化程度越高,网络越慢。虽然提高精度,但对具备并行运算的硬件设备不友好。

 (4)Element—wise(ReLU、shortcut等)的影响不可忽略。

6.Shuffle Net_v2网络架构改进

根据以上四条原则, shufflenet_v2对 shufflenet_v1进行了一系列改进,网络架构如下图:

1处采用划分channle_split的方式,减少进入bneck的通道数,对半分。

2处将组卷积改回普通1*1卷积,遵循第二条2,较少组数g。

3处采用shuffle的位置变化。

4处采用concat拼接保证整体input_c=output_c。

5处ReLU的位置变化。

 6bneck中1*1—3*3—1*1三层卷积的输入通道数与输出通道数相等。

(d)图中下采样操作,通道划分channle_split,输出通道数增加为两倍。

7.Shuffle Net_v2参数

对于每一个stage的第一个block,channel翻倍,比如stage2的block1,每个分支有58个channels,对应(d)图。而其他block采用split的方法将input_channels均分。

### ShuffleNet V1 和 V2 架构的主要区别 #### 一、基本架构改进 ShuffleNet V2 并未仅仅关注于 FLOPs (floating point operations per second) 这一指标来衡量模型效率,而是综合考虑了其他因素如内存访问成本(MAC)[^4]。相比之下,ShuffleNet V1 更加侧重减少计算量以提高速度。 #### 二、通道分离策略调整 在设计上,ShuffleNet V2 对 channel shuffle 操作进行了优化,在保持原有优势的同时解决了部分实现细节上的不足之处。具体来说,V1 版本中的逐点卷积(pointwise group convolutions)之后紧接着就是channel shuffle操作;而在 V2 中,则是在两个连续的pointwise convolution之间加入shuffle过程[^5]。 #### 三、残差连接引入 为了进一步提升网络性能并缓解深层结构带来的梯度消失问题,ShuffleNet V2 引入了residual connections(即跳跃连接)。这种做法使得信息能够更顺畅地传递到更深层,从而有助于训练更加复杂的模型[^6]。 ```python import torch.nn as nn class BasicUnit(nn.Module): def __init__(self, inp, oup, stride): super(BasicUnit, self).__init__() branch_main = [ # pw nn.Conv2d(inp, inp, 1, 1, 0, bias=False), nn.BatchNorm2d(inp), nn.ReLU(inplace=True), # dw nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), nn.BatchNorm2d(inp), # pw-linear nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ] self.branch_main = nn.Sequential(*branch_main) if not stride == 1 or inp != oup: branch_proj = [ # dw nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), nn.BatchNorm2d(inp), # pw-linear nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ] self.branch_proj = nn.Sequential(*branch_proj) else: self.branch_proj = None def forward(self, old_x): if self.branch_proj is None: proj_x = old_x else: proj_x = self.branch_proj(old_x) main_x = self.branch_main(old_x) out = nn.ReLU()(main_x + proj_x) return channel_shuffle(out, 2) def channel_shuffle(x, groups): batchsize, num_channels, height, width = x.data.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, -1, height, width) return x ``` 上述代码展示了基于ShuffleNet V2的一个基础单元`BasicUnit`的设计思路及其内部的操作流程,包括但不限于grouped convolution、depth-wise separable convolution以及channel shuffling机制的应用方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山上的小酒馆

谢谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值