关于EM算法(Expectation Maximization)

EM算法是一个解决类似先有鸡还是先有蛋的问题

EM算法想解决的问题:手里有一堆sample data,但是data的部分信息缺失,称这部分丢失的信息为隐变量(隐变量是真实存在的客观信息,只是因丢失而不被知道),同时产生这些data的distribution含有未知参数。即data信息有缺失,originating distribution信息也有缺失的情况下如何同时得到两者的信息。

X表示data,Z表示隐变量, θ表示概率分布的参数

motivation:1.已知distribution时,即知道(X, Z)的联合概率,可以容易地计算隐变量的后验概率P(Z|X),只需要使用贝叶斯公式即可                 

                     2.已知数据的全部信息时,只需要使用极大似然估计,即可获得分布参数的最佳估计

因此将两者结合起来,迭代进行求解。

标准的EM算法:

1.初始化参数θold

2.E步:E表示E(log likelyhood),E[ log P((X, Z)|  θ)]是对完整数据的似然函数求期望,下式即似然函数的期望

   #z连续情况改求和为积分即可

#Z的后验概率使用贝叶斯定理计算,该式整体是对完整数据似然函数的一种加权,利用θold得到的z分布对data进行加权,得到期望的完整数据

                助力理解的小例子:z后验取1/-1概率均为1/2   手头的data为(1,2)   则可以认为完整数据为0.5个((1,2),  1)和0.5个((1, 2),  -1),此时的似然函数也就分裂成了两个,需要对他们求期望

3.M步: 对上面求得的函数求极值即可,E步得到θ的单参量函数,即期望似然函数,记为Q

4.返回2步循环

GMM:高斯混合模型

使用了一种启发式的EM算法,不是标准的EM算法,因为其极大化的是不完整数据的似然函数

一维情况:

高维情况:

另一种常见写法:ri,k即xi样本属于class k的后验概率

本质上其实没有得到什么迭代关系,而是函数取极值时的三个耦合在一起的三参量方程,我们硬把三个参量单独挪到等式一边,以期望得到迭代关系,这和迭代求解线性方程组十分相似。

后续:GMM算法使用的是标准的EM算法,只是推导较为冗长,结果竟然和上述迭代方程一致

注:详细推导见B站白板推导up

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值