矩阵的特征值估计

特征值实虚部估计

矩阵越不对称,特征值的虚部越大,反Hermite矩阵的特征值为纯虚数。

矩阵的行列式/特征值之积估计

行列式不大于各列模长之积

严格对角占优矩阵的行列式估计

矩阵的特征值平方和估计

特征值平方和不大于Frobenius范数的平方

正规矩阵上式取等

\displaystyle \sum_{r=1}^{n}[Re(\lambda_r)]^2 \leqslant \sum_{r,s=1}^{n}\left | \frac{a_{rs}+ \overline {a_{sr}}}{2} \right |^2

\displaystyle \sum_{r=1}^{n}[Im(\lambda_r)]^2 \leqslant \sum_{r,s=1}^{n}\left | \frac{a_{rs}- \overline {a_{sr}}}{2} \right |^2

特征区域估计

特征区域估计:矩阵的盖尔圆以最大连通分量为单元,连通分量里有几个盖尔圆,就有几个特征值

更强的盖尔圆定理:矩阵的特征值λ在矩阵的第i行盖尔圆中,i为特征向量x中最大模元素index

特征值的隔离:利用相似矩阵具有相同特征值,求相似矩阵的盖尔圆,利用对角阵作P等效于调节盖尔圆半径,使不同盖尔圆不相交

找到一个控制矩阵B,可以利用B调整盖尔圆半径

利用行半径和列半径共同调节盖尔圆半径,取定二者比例α,就得到一组盖尔圆

用一组卡西尼卵形线作区域

可约矩阵与不可约矩阵

可约矩阵:存在P置换阵,使得下式成立,其中C11,C22为方阵,则称方阵A是可约的

不可约矩阵:找不到P

矩阵的可约与不可约的图判别方法:以n个顶点代表n个对角元。若 一个非对角元素非零,则作一条从与它 同行对角元的那个顶点到与它同列对角 元的顶点的有向线段。不可约矩阵的任意两节点之间都存在有向路径连通,可约矩阵存在节点p,q,无法从p到达q。

矩阵按行/列严格对角占优,则矩阵可逆

谱半径的估计:

对谱半径不大于矩阵1范数和无穷范数的推广,α=0即1范(1范数:max列和;∞范数:max行和)

α取1/2,利用i行之和,i列之和计算

注:

广义特征值问题:

该问题存在n个特征值及n个完备的(线性无关的)特征向量

一组向量满足如下条件称为按B标准正交(B为任何矩阵)

无论B为何矩阵,都有:所有向量非0,且为线性无关向量组

Rayleigh商:

实对称矩阵的Rayleigh商

R(kx) = R(x) 

max R(x) = max λ   min R(x) = min λ    (针对实对称阵成立,所有向量都可以向标准正交特征向量组投影,向量x的R(x)为各个特征向量分量对应的特征值的加权平均,以投影系数的平方为权重)

R(x)的驻点是矩阵的特征向量

利用Rayleigh商求特征值的极大极小原理:

(针对广义特征值问题,更改R(x)为\frac{x^TAx}{x^TBx}即可,结论不变)

  • 22
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值