矩阵常识与jordan标准型

1.换基过渡矩阵,坐标变换公式

        [y1, y2, y3] = [x1, x2, x3]C  #y为新基,x为旧基,注意y1对应于C中的一列

        新坐标=C^{-1} 旧坐标

2.线性变换的矩阵表示,在不同基下的矩阵表示

        

        

关于矩阵A的最小零化多项式:

最小多项式(最高次系数为1)可以整除任何零化多项式(最高次系数为1)

最小多项式的零点分布和特征多项式的零点分布相同(不考虑零点重数)

最小多项式求法:=最大不变因子

selvester定理:AB和BA的特征值只差在0特征值的个数上,非0特征值的数量和分布完全一致

jordan标准型:

特征多项式的零点分布重数情况直接决定了jordan标准型中块的可能大小,其实就是把特征多项式拆拆合合

矩阵A的jordan标准型在不考虑块之间的顺序的情况下是唯一的

 Jordan标准型是一整个“相似矩阵大家族”的典型代表,即表示同一个线性变换大家族的典型代表

计算方法:计算矩阵的各阶行列式因子(k阶子式的最大公因式)Dk,计算不变因子d_k=\frac{D_k}{D_{k-1}},将所有不变因子拆分为初等因子组,每个初等因子对应一个jordan块

jordan块的幂次计算:将幂次看作函数作用于jordan块上

正规矩阵

任何方阵都可以正交相似于上三角矩阵,但是只有正规矩阵可以正交相似于对角阵

1.对称变换是定义在内积上的

2.正交变换也可以定义在内积上,本质是线性变换前后范数不变

3. 2个子空间的和是直和即2个子空间没有交集(除了0元素),两个子空间之间线性无关

关于内积

        欧几里得空间:实内积实线性空间

        酉空间:复内积复线性空间(复内积满足正定性,<x, x> >=0 自己和自己的内积均为实数)

        cauchy-schwarz不等式是使用内积书写的,作为内积的一条性质,以内积形式记忆

<x,  y> <y,  x> <=  <x,  x>  <y,  y>(复)            <x,  y>^2  <=  <x,  x>  <y,  y>(实)

       度量矩阵:基内积矩阵,恒对称正定(由于内积的正定性),在此基下,计算任意两个向量x,  y的内积为x^TAy(x,  y为基下坐标)

        任意对称正定矩阵都可以作为一组基的度量矩阵,于是定义一个内积等价于,定义一个对称正定矩阵(再任选一组基)

        一个内积在不同基下的度量矩阵合同,C取过渡矩阵(应用:与正定矩阵合同的矩阵正定)

        线性无关是向量自身的性质,和基无关,线性无关的向量在任意一组基下的坐标均线性无关

        线性变换的特征向量和特征值是线性变换自身的性质,不依赖于基的选择

求解微分方程:

上图中的积分号为不带+C的结果,即只有最后c一个自由量

  • 14
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值