算法公式汇总 - 1

三角函数

定义式

在这里插入图片描述

倒数关系

 余切:  c o t A = 1 t a n A \text { 余切:} \ cotA = \frac{1}{tanA}  余切: cotA=tanA1
 正切:  s e c A = 1 c o s A \text { 正切:} \ secA = \frac{1}{cosA}  正切: secA=cosA1
 余割:  c s c A = 1 s i n A \text { 余割:} \ cscA = \frac{1}{sinA}  余割: cscA=sinA1

 反正切:  a r c t a n ( t a n X ) = t a n ( a r c t a n X ) = X \text { 反正切:} \ arctan(tanX) = tan(arctanX) = X  反正切: arctan(tanX)=tan(arctanX)=X


诱导公式

  • sin ⁡ ( − α ) = − sin ⁡ α
  • cos ⁡ ( − α ) = cos ⁡ α
  • sin ⁡ ( π 2 − α ) = cos ⁡ α
  • cos ⁡ ( π 2 − α ) = sin ⁡ α
  • sin ⁡ ( π 2 + α ) = cos ⁡ α
  • cos ⁡ ( π 2 + α ) = − sin ⁡ α
  • sin ⁡ ( π − α ) = sin ⁡ α
  • cos ⁡ ( π − α ) = − cos ⁡ α
  • sin ⁡ ( π + α ) = − sin ⁡ α
  • cos ⁡ ( π + α ) = − cos ⁡ α

平方关系

1 + t a n 2 α = s e c 2 α 1 + tan^2α = sec^2α 1+tan2α=sec2α
1 + c o t 2 α = c s c 2 α 1 + cot^2α = csc^2α 1+cot2α=csc2α
s i n 2 α + c o s 2 α = 1 sin^2α + cos^2α = 1 sin2α+cos2α=1

两角和与差的三角函数

s i n ⁡ ( α + β ) = s i n ⁡ α c o s ⁡ β + c o s ⁡ α s i n ⁡ β sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β sin(α+β)=sinαcosβ+cosαsinβ
c o s ⁡ ( α + β ) = c o s ⁡ α c o s ⁡ β − s i n ⁡ α s i n ⁡ β cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β cos(α+β)=cosαcosβsinαsinβ
s i n ⁡ ( α − β ) = s i n ⁡ α c o s ⁡ β − c o s ⁡ α s i n ⁡ β sin ⁡ ( α − β ) = sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β sin(αβ)=sinαcosβcosαsinβ
c o s ⁡ ( α − β ) = c o s ⁡ α c o s ⁡ β + s i n ⁡ α s i n ⁡ β cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β cos(αβ)=cosαcosβ+sinαsinβ
t a n ⁡ ( α + β ) = t a n ⁡ α + t a n ⁡ β 1 − t a n ⁡ α t a n ⁡ β tan ⁡ ( α + β ) = \frac{ tan ⁡ α + tan ⁡ β}{1 - tan ⁡ α tan ⁡ β} tan(α+β)=1tanαtanβtanα+tanβ
t a n ⁡ ( α − β ) = t a n ⁡ α − t a n ⁡ β 1 + t a n ⁡ α t a n ⁡ β tan ⁡ ( α − β ) = \frac{ tan ⁡ α - tan ⁡ β}{1 + tan ⁡ α tan ⁡ β} tan(αβ)=1+tanαtanβtanαtanβ

积化和差公式

c o s ⁡ α c o s ⁡ β = 1 2 [ c o s ⁡ ( α + β ) + c o s ( α − β ) ] cos ⁡ α cos ⁡ β = \frac{1}{2} [ cos ⁡ ( α + β ) + c o s ( α − β ) ] cosαcosβ=21[cos(α+β)+cos(αβ)]
c o s ⁡ α s i n ⁡ β = 1 2 [ s i n ⁡ ( α + β ) − s i n ( α − β ) ] cos ⁡ α sin ⁡ β = \frac{1}{2} [ sin ⁡ ( α + β ) - sin ( α − β ) ] cosαsinβ=21[sin(α+β)sin(αβ)]
s i n ⁡ α c o s ⁡ β = 1 2 [ s i n ⁡ ( α + β ) + s i n ( α − β ) ] sin ⁡ α cos ⁡ β = \frac{1}{2} [ sin ⁡ ( α + β ) + sin ( α − β ) ] sinαcosβ=21[sin(α+β)+sin(αβ)]
s i n ⁡ α s i n ⁡ β = − 1 2 [ c o s ⁡ ( α + β ) + c o s ( α − β ) ] sin ⁡ α sin ⁡ β = -\frac{1}{2} [ cos ⁡ ( α + β ) + c o s ( α − β ) ] sinαsinβ=21[cos(α+β)+cos(αβ)]

和差化积公式

s i n ⁡ α + s i n ⁡ β = 2 s i n ⁡ α + β 2 c o s ⁡ α − β 2 sin ⁡ α + sin ⁡ β = 2 sin ⁡ \frac{α + β}{2} cos ⁡ \frac{α - β}{2} sinα+sinβ=2sin2α+βcos2αβ
s i n ⁡ α − s i n ⁡ β = 2 c o s ⁡ α + β 2 s i n ⁡ α − β 2 sin ⁡ α - sin ⁡ β = 2 cos ⁡ \frac{α + β}{2} sin ⁡ \frac{α - β}{2} sinαsinβ=2cos2α+βsin2αβ
c o s ⁡ α + c o s ⁡ β = 2 c o s ⁡ α + β 2 c o s ⁡ α − β 2 cos ⁡ α + cos ⁡ β = 2 cos ⁡ \frac{α + β}{2} cos ⁡ \frac{α - β}{2} cosα+cosβ=2cos2α+βcos2αβ
c o s ⁡ α − c o s ⁡ β = − 2 s i n ⁡ α + β 2 s i n ⁡ α − β 2 cos ⁡ α - cos ⁡ β = -2 sin ⁡ \frac{α + β}{2} sin ⁡ \frac{α - β}{2} cosαcosβ=2sin2α+βsin2αβ

倍角公式

s i n ⁡ 2 α = 2 s i n ⁡ α c o s α sin ⁡ 2 α = 2 sin ⁡ α cos α sin⁡2α=2sinαcosα
c o s ⁡ 2 α = c o s ⁡ 2 α − s i n ⁡ 2 α = 1 − 2 s i n ⁡ 2 α = 2 c o s ⁡ 2 α − 1 cos ⁡ 2 α = cos ⁡^2 α − sin ⁡ ^2 α = 1 − 2 sin ⁡ ^2 α = 2 cos ⁡ ^2 α − 1 cos⁡2α=cos2αsin2α=12sin2α=2cos2α1
s i n ⁡ 3 α = − 4 s i n ⁡ 3 α + 3 s i n ⁡ α sin ⁡ 3 α = − 4 sin ⁡ ^3 α + 3 sin ⁡ α sin⁡3α=4sin3α+3sinα
c o s ⁡ 3 α = 4 c o s ⁡ 3 α − 3 c o s ⁡ α cos ⁡ 3 α = 4 cos ⁡ ^3 α − 3 cos ⁡ α cos⁡3α=4cos3α3cosα
s i n ⁡ 2 α = 1 − c o s ⁡ 2 α 2 sin ⁡ ^2 α = \frac{1 − cos ⁡ 2 α}{2} sin2α=21cos⁡2α
c o s ⁡ 2 α = 1 + c o s ⁡ 2 α 2 cos ⁡ ^2 α = \frac{1 + cos ⁡ 2 α}{2} cos2α=21+cos⁡2α
t a n ⁡ 2 α = 2 t a n ⁡ α 1 − t a n ⁡ 2 α tan ⁡ 2 α = \frac{2 tan ⁡ α}{1 − tan ⁡ ^2 α } tan⁡2α=1tan2α2tanα
c o t ⁡ 2 α = c o t ⁡ 2 α − 1 2 c o t ⁡ α cot ⁡ 2 α = \frac{cot ⁡ ^2 α − 1}{2 cot ⁡ α} cot⁡2α=2cotαcot2α1

半角公式

s i n ⁡ 2 α 2 = 1 − c o s ⁡ α 2 sin ⁡ ^2 \frac{α}{2} = \frac{1 − cos ⁡ α}{2} sin22α=21cosα
c o s ⁡ 2 α 2 = 1 + c o s ⁡ α 2 cos ⁡ ^2 \frac{α}{2} = \frac{1 + cos ⁡ α}{2} cos22α=21+cosα
s i n α 2 = ± 1 − c o s ⁡ α 2 sin \frac{α}{2} = ±\sqrt{\frac{1 - cos ⁡ α}{2}} sin2α=±21cosα
c o s α 2 = ± 1 + c o s ⁡ α 2 cos \frac{α}{2} = ±\sqrt{\frac{1 + cos ⁡ α}{2}} cos2α=±21+cosα
t a n α 2 = 1 − c o s ⁡ α s i n ⁡ α = s i n ⁡ α 1 + c o s ⁡ α = ± 1 − c o s ⁡ α 1 + c o s ⁡ α tan \frac{α}{2} = \frac{1 - cos ⁡ α}{sin ⁡ α} = \frac{sin ⁡ α}{1 + cos ⁡ α } = ±\sqrt{\frac{1 - cos ⁡ α}{1 + cos ⁡ α}} tan2α=sinα1cosα=1+cosαsinα=±1+cosα1cosα
c o t α 2 = s i n ⁡ α 1 − c o s ⁡ α = 1 + c o s ⁡ α s i n ⁡ α = ± 1 + c o s ⁡ α 1 − c o s ⁡ α cot \frac{α}{2} = \frac{sin ⁡ α}{1 - cos ⁡ α} = \frac{1 + cos ⁡ α }{sin ⁡ α } = ±\sqrt{\frac{1 + cos ⁡ α}{1 - cos ⁡ α}} cot2α=1cosαsinα=sinα1+cosα=±1cosα1+cosα

万能公式

s i n α = 2 t a n ⁡ α 2 1 + t a n 2 ⁡ α 2 sin α = \frac{2tan ⁡\frac{α}{2}}{1 + tan ^2 ⁡\frac{α}{2}} sinα=1+tan22α2tan2α
c o s α = 1 − t a n 2 ⁡ α 2 1 + t a n 2 ⁡ α 2 cos α = \frac{1 - tan ^2 ⁡\frac{α}{2}}{1 + tan ^2 ⁡\frac{α}{2}} cosα=1+tan22α1tan22α

其他公式

1 + s i n ⁡ α = ( s i n ⁡ α 2 + c o s ⁡ α 2 ) 2 1 + sin ⁡ α = ( sin ⁡\frac{α}{2} + cos ⁡\frac{α}{2}) ^2 1+sinα=(sin2α+cos2α)2
1 − s i n ⁡ α = ( s i n ⁡ α 2 − c o s ⁡ α 2 ) 2 1 - sin ⁡ α = ( sin ⁡\frac{α}{2} - cos ⁡\frac{α}{2}) ^2 1sinα=(sin2αcos2α)2

反三角函数恒等式

a r c s i n ⁡ x + a r c c o s ⁡ x = ⁡ π 2 arcsin ⁡ x + arccos ⁡ x = ⁡\frac{π}{2} arcsinx+arccosx=2π
a r c t a n ⁡ x + a r c c o t ⁡ x = ⁡ π 2 arctan ⁡ x + arccot ⁡ x = ⁡\frac{π}{2} arctanx+arccotx=2π
s i n ⁡ ( a r c c o s ⁡ x ) = 1 − x 2 sin ⁡ ( arccos ⁡ x ) = \sqrt{1 − x ^2} sin(arccosx)=1x2
c o s ⁡ ( a r c s i n ⁡ x ) = 1 − x 2 cos ⁡ ( arcsin ⁡ x ) = \sqrt{1 − x ^2} cos(arcsinx)=1x2
s i n ⁡ ( a r c s i n ⁡ x ) = x sin ⁡ ( arcsin ⁡ x ) = x sin(arcsinx)=x
a r c s i n ⁡ ( s i n ⁡ x ) = x arcsin ⁡ ( sin ⁡ x ) = x arcsin(sinx)=x
c o s ⁡ ( a r c c o s ⁡ x ) = x cos ⁡ ( arccos ⁡ x ) = x cos(arccosx)=x
a r c c o s ⁡ ( c o s ⁡ x ) = x arccos ⁡ ( cos ⁡ x ) = x arccos(cosx)=x
a r c c o s ⁡ ( − x ) = π − a r c c o s ⁡ x arccos ⁡ ( − x ) = π − arccos ⁡ x arccos(x)=πarccosx




对数函数

定义式

a x = N ⇔ x = l o g a N a^x = N \Leftrightarrow x = log_a{N} ax=Nx=logaN

  • x叫做以a为底N的对数
  • a叫做对数的底数
  • N叫做真数

在这里插入图片描述

运算

l o g α M N = l o g α M + l o g α N log_α{MN} = log_α{M} + log_α{N} logαMN=logαM+logαN
l o g α M N = l o g α M − l o g α N log_α{\frac{M}{N}} = log_α{M} - log_α{N} logαNM=logαMlogαN

a l n x = l n x a a lnx = lnx^a alnx=lnxa




无穷小的比较

  • 若 limβ/α = 0,则称β是比α高阶的无穷小,记作 β = o(α);
  • 若 limβ/α = ∞,则称β是比α低阶的无穷小
  • 若 limβ/α = c ≠ 0,则称β与α是同阶无穷小
  • 若 limβ/α = 1,则称β与α是等价无穷小,记作 α ~ β;
  • 若 limβ/α^k = c ≠ 0,则称β是比αk阶的无穷小



极限的计算

常用的等价无穷小

s i n x ∼ x sinx \sim x sinxx
t a n x ∼ x tanx \sim x tanxx
a r c s i n x ∼ x arcsinx \sim x arcsinxx
a r c t a n x ∼ x arctanx \sim x arctanxx
1 − c o s ⁡ x ∼ ⁡ 1 2 x 2 1 - cos ⁡ x \sim ⁡\frac{1}{2} x^2 1cosx21x2
l n ( 1 + x ) ∼ x ln(1 + x)\sim x ln1+xx
e x − 1 ∼ x e^x - 1 \sim x ex1x
a x − 1 ∼ x l n a a^x - 1 \sim xlna ax1xlna
( 1 + x ) a − 1 ∼ a x (1 + x)^a - 1 \sim ax (1+x)a1ax
( 1 + x ) a − 1 ∼ a x (1 + x)^a - 1 \sim ax (1+x)a1ax

1 + x − 1 − x ∼ x \sqrt{1 + x} - \sqrt{1 - x} \sim x 1+x 1x x
x − s i n x ∼ 1 6 x 3 x - sinx \sim \frac{1}{6}x^3 xsinx61x3
t a n x − x ∼ 1 3 x 3 tanx - x \sim \frac{1}{3}x^3 tanxx31x3
x − l n ( 1 + x ) ∼ 1 2 x 2 x - ln(1 + x) \sim \frac{1}{2}x^2 xln(1+x)21x2
a r c s i n x − x ∼ 1 6 x 3 arcsinx - x \sim \frac{1}{6}x^3 arcsinxx61x3
x − a r c t a n x ∼ 1 3 x 3 x - arctanx \sim \frac{1}{3}x^3 xarctanx31x3

第一重要极限

第一重要极限: lim ⁡ n → 0 s i n x x = 1 \text {第一重要极限:} \lim_{n \to 0} \frac{sinx}{x} = 1 第一重要极限:n0limxsinx=1
推广: lim ⁡ s i n α α = 1 ( α 为无穷小量 ) \text {推广:} \lim \frac{sinα}{α} = 1(α为无穷小量) 推广:limαsinα=1(α为无穷小量)

由第一重要极限可得以下极限结果:
lim ⁡ n → 0 t a n x x = 1 , lim ⁡ n → 0 a r c s i n x x = 1 , lim ⁡ n → 0 a r c t a n x x = 1 , lim ⁡ n → 0 1 − c o s x x 2 = 1 2 , lim ⁡ n → 0 s i n α x x = α , lim ⁡ n → 0 s i n α x s i n β x = α β , \lim_{n \to 0} \frac{tanx}{x} = 1, \lim_{n \to 0} \frac{arcsinx}{x} = 1, \lim_{n \to 0} \frac{arctanx}{x} = 1,\lim_{n \to 0} \frac{1 - cosx}{x^2} = \frac{1}{2},\lim_{n \to 0} \frac{sinαx}{x} = α,\lim_{n \to 0} \frac{sinαx}{sinβx} = \frac{α}{β}, n0limxtanx=1n0limxarcsinx=1n0limxarctanx=1n0limx21cosx=21n0limxsinαx=αn0limsinβxsinαx=βα


第二重要极限

∗ ∗ 1 ∞ 型极限常用结论 ∗ ∗ **1^∞ 型极限常用结论** 1型极限常用结论

第二重要极限: lim ⁡ n → ∞ ( 1 + 1 n ) n = e , lim ⁡ n → ∞ ( 1 + 1 x ) x = e , lim ⁡ n → 0 ( 1 + x ) 1 x = e , \text {第二重要极限:} \lim_{n \to \infty} (1 + \frac{1}{n})^n = e,\lim_{n \to \infty} (1 + \frac{1}{x})^x = e,\lim_{n \to 0} (1 + x)^{\frac{1}{x}} = e, 第二重要极限:nlim(1+n1)n=enlim(1+x1)x=en0lim(1+x)x1=e
推广: lim ⁡ ( 1 + α ) 1 α = e ( α 为无穷小量 ) \text {推广:} \lim (1 + α) ^{\frac{1}{α}}= e(α为无穷小量) 推广:lim(1+α)α1=e(α为无穷小量)

由第二重要极限可得以下极限结果:
lim ⁡ n → ∞ ( 1 − 1 x ) x = 1 e , lim ⁡ n → ∞ ( 1 + a x ) b x = e a b , lim ⁡ n → ∞ ( 1 + a x ) b x + c = e a b , \lim_{n \to \infty} (1 - \frac{1}{x})^x = \frac{1}{e},\lim_{n \to \infty} (1 + \frac{a}{x})^{bx} = e^{ab},\lim_{n \to \infty} (1 + \frac{a}{x})^{bx + c} = e^{ab}, nlim(1x1)x=e1nlim(1+xa)bx=eabnlim(1+xa)bx+c=eab




导数计算

当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限

定义

自变量增量: Δ x ≠ 0 \text {自变量增量:} \Delta x \neq 0 自变量增量:Δx=0
函数增量: Δ y = f ( x + Δ x ) − f ( x ) \text {函数增量:} \Delta y = f(x + \Delta x) - f(x) 函数增量:Δy=f(x+Δx)f(x)
作商: Δ y Δ x \text {作商:} \frac{\Delta y}{\Delta x} 作商:ΔxΔy
求极限: lim ⁡ Δ x → 0 Δ y Δ x = f ′ ( x ) \text {求极限:} \lim_{ \Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x) 求极限:Δx0limΔxΔy=f(x)

基本初等函数

常数函数: y = c ,导数 y ′ = 0 \text {常数函数:}y = c,导数 y' = 0 常数函数:y=c,导数y=0
幂函数: y = x n ,导数 y ′ = n x ( n − 1 ) \text {幂函数:}y = x^n,导数 y' = n x ^ {(n-1)} 幂函数:y=xn,导数y=nx(n1)
指数函数: y = a x ,导数 y ′ = a x l n ( a ) ; y = e x ,导数 y ′ = e x ( y ′ = − e x , x < 0 ) \text {指数函数:}y = a^x,导数 y' = a^x ln(a);y= e^x,导数 y' = e^x(y' = -e^x, x<0) 指数函数:y=ax,导数y=axln(a)y=ex,导数y=ex(y=ex,x<0)
对数函数: y = log ⁡ a x ,导数 y ′ = 1 x l n a ; y = l n x ,导数 y ′ = 1 x \text {对数函数:}y = \log_ax,导数 y' =\frac{1} {x lna};y = lnx,导数 y' =\frac{1}{x} 对数函数:y=logax,导数y=xlna1y=lnx,导数y=x1
双曲函数: y = s h x ,导数 y ′ = c h x ; y = c h x ,导数 y ′ = s h x \text {双曲函数:}y = shx,导数 y' = chx;y = chx,导数 y' = shx 双曲函数:y=shx,导数y=chxy=chx,导数y=shx
加法法则: ( f ( x ) + g ( x ) ) ′ = f ′ ( x ) + g ′ ( x ) \text {加法法则:}(f(x) + g(x))' = f'(x) + g'(x) 加法法则:(f(x)+g(x))=f(x)+g(x)
减法法则: ( f ( x ) − g ( x ) ) ′ = f ′ ( x ) − g ′ ( x ) \text {减法法则:}(f(x) - g(x))' = f'(x) - g'(x) 减法法则:(f(x)g(x))=f(x)g(x)

三角函数

三角函数: y = s i n x ,导数 y ′ = c o s x ; y = c o s x ,导数 y ′ = − s i n x ; y = t a n x ,导数 y ′ = s e c 2 x = 1 + t a n 2 x \text {三角函数:}y = sinx,导数 y' = cosx;y = cosx,导数 y' = -sinx;y = tanx,导数 y' = sec^2 x = 1 + tan^2x 三角函数:y=sinx,导数y=cosxy=cosx,导数y=sinxy=tanx,导数y=sec2x=1+tan2x
正切余切: y = t a n x ,导数 y ′ = s e c 2 x / y ′ = 1 c o s 2 x ; y = c o t x ,导数 y ′ = − c s c 2 x / y ′ = − 1 s i n 2 x \text {正切余切:}y = tanx,导数 y' = sec^2x / y' = \frac{1}{cos^2x};y = cotx,导数 y' = -csc^2x / y' = - \frac{1}{sin^2x} 正切余切:y=tanx,导数y=sec2x/y=cos2x1y=cotx,导数y=csc2x/y=sin2x1
正割余割: y = s e c x ,导数 y ′ = t a n x ∗ s e c x ; y = c s c x ,导数 y ′ = − c o t x ∗ c s c x \text {正割余割:}y = secx,导数 y' = tanx*secx;y = cscx,导数 y' = -cotx * cscx 正割余割:y=secx,导数y=tanxsecxy=cscx,导数y=cotxcscx
反三角函数: y = a r c s i n x ,导数 y ′ = 1 1 − x 2 ; y = a r c c o s x ,导数 y ′ = − 1 1 − x 2 ; y = a r c t a n x ,导数 y ′ = 1 1 + x 2 ; y = a r c c o t x ,导数 y ′ = − 1 1 + x 2 ; \text {反三角函数:}y = arcsinx,导数 y' = \frac{1}{\sqrt{1 - x^2}}; y = arccosx,导数 y' = \frac{-1}{\sqrt{1 - x^2}}; y = arctanx,导数 y' = \frac{1}{1 + x^2}; y = arccotx,导数 y' = \frac{-1}{1 + x^2}; 反三角函数:y=arcsinx,导数y=1x2 1y=arccosx,导数y=1x2 1y=arctanx,导数y=1+x21y=arccotx,导数y=1+x21
三角函数平方求导: y = s i n 2 x ,导数 y ′ = s i n 2 x / 2 s i n x c o s x ; y = c o s 2 x ,导数 y ′ = − s i n 2 x / − 2 c o n x s i n x ; y = t a n 2 x ,导数 y ′ = 2 t a n x s e c 2 x / 2 s i n x c o s 3 x \text {三角函数平方求导:}y = sin^2x,导数 y' = sin2x / 2sinxcosx;y = cos^2x,导数 y' = -sin2x / -2conxsinx;y = tan^2x,导数 y' = 2tanxsec^2x / 2 \frac{sinx}{cos^3x} 三角函数平方求导:y=sin2x,导数y=sin2x/2sinxcosxy=cos2x,导数y=sin2x/2conxsinxy=tan2x,导数y=2tanxsec2x/2cos3xsinx
反三角函数平方求导: y = c o t 2 x ,导数 y ′ = − 2 c o t x c s c 2 x ; y = s e c 2 x ,导数 y ′ = 2 s e c x ∗ s e c x t a n x / 2 s e c 2 x ∗ t a n x ; y = c s c 2 x ,导数 y ′ = 2 c o t x c s c 2 x ; \text {反三角函数平方求导:}y = cot^2x,导数 y' = -2cotxcsc^2x;y = sec^2x,导数 y' = 2secx*secxtanx / 2sec^2x*tanx;y = csc^2x,导数 y' = 2cotxcsc^2x; 反三角函数平方求导:y=cot2x,导数y=2cotxcsc2xy=sec2x,导数y=2secxsecxtanx/2sec2xtanxy=csc2x,导数y=2cotxcsc2x

四则运算法则

[ u ( x ) ± v ( x ) ] ′ = u ′ ( x ) ± v ′ ( x ) [u(x) \pm v(x)]' = u'(x) \pm v'(x) [u(x)±v(x)]=u(x)±v(x)
[ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x) [u(x)v(x)]=u(x)v(x)+u(x)v(x)
[ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v 2 ( x ) [\frac{u(x)}{v(x)}]' = \frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)} [v(x)u(x)]=v2(x)u(x)v(x)u(x)v(x)
[ u 1 ( x ) ± u 2 ( x ) ± . . . ± u n ( x ) ] ′ = u 1 ′ ( x ) ± u 2 ′ ( x ) ± . . . ± u n ′ ( x ) [u_1(x) \pm u_2(x) \pm ... \pm u_n(x)]' = u_1'(x) \pm u_2'(x) \pm ... \pm u_n'(x) [u1(x)±u2(x)±...±un(x)]=u1(x)±u2(x)±...±un(x)
[ u 1 ( x ) u 2 ( x ) . . . u n ( x ) ] ′ = u 1 ′ ( x ) u 2 ( x ) . . . u n ( x ) + u 1 ( x ) u 2 ′ ( x ) . . . u n ( x ) + . . . + u 1 ( x ) u 2 ( x ) . . . u n ′ ( x ) [u_1(x)u_2(x)...u_n(x)]' = u_1'(x)u_2(x)...u_n(x) + u_1(x)u_2'(x)...u_n(x) + ... + u_1(x)u_2(x)...u_n'(x) [u1(x)u2(x)...un(x)]=u1(x)u2(x)...un(x)+u1(x)u2(x)...un(x)+...+u1(x)u2(x)...un(x)
[ u n ( x ) ] ′ = n u n − 1 ( x ) u ′ ( x ) [u^n(x)]' = nu^{n - 1}(x)u'(x) [un(x)]=nun1(x)u(x)

隐函数

d y d x = − F ′ ( x ) F ′ ( y ) \frac{dy}{dx} = -\frac{F'(x)}{F'(y)} dxdy=F(y)F(x)

高阶导数

莱布尼兹公式:
[ u ( x ) v ( x ) ] ( n ) = ∑ i = 0 n C n i u ( n − i ) ( x ) ∗ v ( i ) ( x ) = u ( n ) ( x ) v ( x ) + C n 1 u ( n − 1 ) ( x ) v ′ ( x ) + . . . + C n k u ( n − k ) ( x ) v ( k ) ( x ) + . . . + u ( x ) v ( n ) ( x ) [u(x)v(x)]^{(n)} = \sum_{i = 0}^n C_n^i u^{(n-i)}(x) * v^{(i)}(x) = u^{(n)}(x)v(x) + C_n^1u^{(n-1)}(x)v'(x) + ... + C_n^ku^{(n-k)}(x)v^{(k)}(x) + ... + u(x)v^{(n)}(x) [u(x)v(x)](n)=i=0nCniu(ni)(x)v(i)(x)=u(n)(x)v(x)+Cn1u(n1)(x)v(x)+...+Cnku(nk)(x)v(k)(x)+...+u(x)v(n)(x)

( x n ) ( n ) = n ! (x^n) ^{(n)} = n! (xn)(n)=n!
( e x ) ( n ) = e x (e^x) ^{(n)} = e^x (ex)(n)=ex
( a x ) ( n ) = a x l n n a (a^x) ^{(n)} = a^xln^na (ax)(n)=axlnna
( s i n x ) ( n ) = s i n ( x + n π 2 ) (sinx) ^{(n)} = sin(x + \frac{nπ}{2}) (sinx)(n)=sin(x+2)
( c o s x ) ( n ) = c o s ( x + n π 2 ) (cosx) ^{(n)} = cos(x + \frac{nπ}{2}) (cosx)(n)=cos(x+2)
( c o s x ) ( n ) = c o s ( x + n π 2 ) (cosx) ^{(n)} = cos(x + \frac{nπ}{2}) (cosx)(n)=cos(x+2)
( l n x ) ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! x n ) (lnx) ^{(n)} = (-1)^{n-1}\frac{(n - 1)!}{x^n}) (lnx)(n)=(1)n1xn(n1)!)
[ l n ( a x + b ) ] ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! a n ( a x + b ) n ) [ln(ax + b)]^{(n)} = (-1)^{n-1}\frac{(n - 1)!a^n}{(ax + b)^n}) [ln(ax+b)](n)=(1)n1(ax+b)n(n1)!an)
( 1 a x + b ) ( n ) = ( − 1 ) n a n n ! ( a x + b ) n + 1 ) (\frac{1}{ax + b}) ^{(n)} = (-1)^{n}\frac{a^n n!}{(ax + b)^{n + 1}}) (ax+b1)(n)=(1)n(ax+b)n+1ann!)
( s i n k x ) ( n ) = k n s i n ( k x + n π 2 ) (sinkx) ^{(n)} = k^nsin(kx + \frac{nπ}{2}) (sinkx)(n)=knsin(kx+2)
( c o s k x ) ( n ) = k n c o s ( k x + n π 2 ) (coskx) ^{(n)} = k^ncos(kx + \frac{nπ}{2}) (coskx)(n)=kncos(kx+2)




导数的定义

lim ⁡ Δ → 0 f ( x 0 + a Δ x ) − f ( x 0 ) Δ x = a f ′ ( x 0 ) \lim_{\Delta \to 0} \frac{f(x_0 + a\Delta x) - f(x_0)}{\Delta x} = af'(x_0) Δ0limΔxf(x0+aΔx)f(x0)=af(x0)
lim ⁡ Δ → 0 f ( x 0 ) − f ( x 0 + a Δ x ) Δ x = − a f ′ ( x 0 ) \lim_{\Delta \to 0} \frac{ f(x_0) - f(x_0 + a\Delta x)}{\Delta x} = -af'(x_0) Δ0limΔxf(x0)f(x0+aΔx)=af(x0)
lim ⁡ Δ → 0 f ( x 0 + a Δ x ) − f ( x 0 + b Δ x ) Δ x = ( a − b ) f ′ ( x 0 ) \lim_{\Delta \to 0} \frac{ f(x_0 + a\Delta x) - f(x_0 + b\Delta x)}{\Delta x} = (a - b)f'(x_0) Δ0limΔxf(x0+aΔx)f(x0+bΔx)=(ab)f(x0)




泰勒公式

定理(带皮亚诺余项的泰勒公式)

设f(x)在x = x_0处n阶可导,则
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + o ( x − x 0 ) n f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + ... + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o(x - x_0)^n f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2+...+n!f(n)(x0)(xx0)n+o(xx0)n

当x_0 = 0时:
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + . . . + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + ... + \frac{f^{(n)}(0)}{n!}x^n + o(x^n) f(x)=f(0)+f(0)x+2!f′′(0)x2+...+n!f(n)(0)xn+o(xn)


几个常用的泰勒公式

e x = 1 + x + x 2 2 ! + . . . + x n n ! + o ( x n ) e^x = 1 + x + \frac{x^2}{2!} + ... + \frac{x^n}{n!} + o(x^n) ex=1+x+2!x2+...+n!xn+o(xn)
s i n x = x − x 3 3 ! + . . . + ( − 1 ) n − 1 x 2 n − 1 ( 2 n − 1 ) ! + o ( x 2 n − 1 ) sinx = x - \frac{x^3}{3!} + ... + (-1)^{n-1}\frac{x^{2n - 1}}{(2n -1)!} + o(x^{2n - 1}) sinx=x3!x3+...+(1)n1(2n1)!x2n1+o(x2n1)
c o s x = 1 − x 2 2 ! + . . . + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) cosx = 1 - \frac{x^2}{2!} + ... + (-1)^{n}\frac{x^{2n}}{(2n)!} + o(x^{2n}) cosx=12!x2+...+(1)n(2n)!x2n+o(x2n)
l n ( 1 + x ) = x − x 2 2 + . . . + ( − 1 ) n − 1 x n n + o ( x n ) ln(1 + x) = x - \frac{x^2}{2} + ... +(-1)^{n - 1} \frac{x^n}{n} + o(x^n) ln(1+x)=x2x2+...+(1)n1nxn+o(xn)
( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + . . . + α ( α − 1 ) . . . ( α − n + 1 ) n ! + o ( x n ) (1 + x)^α = 1 +αx + \frac{α(α - 1)}{2!}x^2 + ... + \frac{α(α - 1) ... (α - n + 1)}{n!} + o(x^n) (1+x)α=1+αx+2!α(α1)x2+...+n!α(α1)...(αn+1)+o(xn)




不等式

( x − y ) 2 = x 2 − 2 x y + y 2 = > x 2 + y 2 ≥ 2 x y (x - y)^2 = x^2 -2xy +y^2 => x^2 + y^2 \geq 2xy (xy)2=x22xy+y2=>x2+y22xy
a x > x > l n x ( x > 1 ) a^x > x > lnx (x > 1 ) ax>x>lnx(x>1)

恒等式

x = e l n x x=e^{lnx} x=elnx





斜率

  • 如果两个曲线相切那么切线斜率相等
  • 如果曲线与 x轴相切 那么曲线在x轴有一点 斜率k = 0



中值定理、不等式、零点问题

中值定理

  • 费马定理: 设f(z)在x=x_0的某邻域U(x_0)内有定义,f(x_0)是f(x)的个极大(极小)值,又设f’(x_0)存在,则f’(x_0)= 0

  • 罗尔定理: 设f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,又设f(a)= f(b),则至少存在一点ξ∈(a,b)使f(§)= 0

  • 拉格朗日中值定理: 设f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,又设f(a)= f(b),则至少存在一点ξ∈(a,b)使f(b) - f(a) = f’(§)(b - a)

f ( x ) = f ( x 0 ) + f ′ ( § ) ( x − x 0 ) f(x) = f(x_0) + f'(§)(x - x_0) f(x)=f(x0)+f(§)(xx0)

令 θ = (§ - x_0) / (x - x_0),则 0 < § < 1,拉格朗日中值公式又可写成

f ( x ) = f ( x 0 ) + f ′ ( x 0 + θ ( x − x 0 ) ) ( x − x 0 ) f(x) = f(x_0) + f'(x_0 + θ(x - x_0))( x - x_0) f(x)=f(x0)+f(x0+θ(xx0))(xx0)

  • 柯西中值定理: 设f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且g(z)≠0,x∈(a,b),则至少存在一点ξ∈(a,b)使

f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( § ) g ′ ( § ) \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(§)}{g'(§)} g(b)g(a)f(b)f(a)=g(§)f(§)

  • 泰勒定理: 设f(x)在闭区间[a,b]上有n阶连续的导数,在开区间(a,b)内有直到n+1阶导数,x∈[a,b],x_0∈[a,b]是任意两点,则至少存在一点ξ介于x_0和x之间,使

f ( x ) = f ( x 0 ) + f ′ ( x 0 1 ! ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x) = f(x_0) + \frac{f'(x_0}{1!})(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + ... + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x) f(x)=f(x0)+1!f(x0)(xx0)+2!f′′(x0)(xx0)2+...+n!f(n)(x0)(xx0)n+Rn(x)

其中
R n ( x ) = f n + 1 ( § ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_n(x) = \frac{f^{n+1}(§)}{(n+1)!}(x-x_0)^{n+1} Rn(x)=(n+1)!fn+1(§)(xx0)n+1
称为拉格朗日余项,整个公式称为具有拉格朗日余项的n阶泰勒公式

如果将定理的条件减弱为:设f(x)在x=x_0具有n阶导数(这就意味着f(x)在x=x_0的某邻域应具有n-1阶导数,并且f^(n-1)(x)在x=x_0处连续),x为点x_0的充分小的邻域内的任意一点,则有

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + ... + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x) f(x)=f(x0)+1!f(x0)(xx0)+...+n!f(n)(x0)(xx0)n+Rn(x)

其中
R n ( x ) = o ( ( x − x 0 ) n ) ( lim ⁡ x → x 0 o ( ( x − x 0 ) n ) ( x − x 0 ) n = 0 ) R_n(x) = o((x-x_0)^n)(\lim_{x \to x_0} \frac{o((x - x_0)^n)}{(x - x_0)^n} = 0) Rn(x)=o((xx0)n)(xx0lim(xx0)no((xx0)n)=0)

称为佩亚诺余项。
这就是佩亚诺余项泰勒公式

佩亚诺余项泰勒公式

几种常用函数的x = 0处展开的佩亚诺余项泰勒公式如下:

e x = 1 + x + x 2 2 ! + . . . + x n n ! + o ( x n ) e^x = 1 + x + \frac{x^2}{2!} + ... +\frac{x^n}{n!} + o(x^n) ex=1+x+2!x2+...+n!xn+o(xn)

s i n x = x − x 3 3 ! + . . . + ( − 1 ) n − 1 x 2 n − 1 ( 2 n − 1 ) ! + o ( x 2 n − 1 ) sinx = x - \frac{x^3}{3!} + ... +(-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!} + o(x^{2n-1}) sinx=x3!x3+...+(1)n1(2n1)!x2n1+o(x2n1)

c o s x = 1 − x 2 2 ! + . . . + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) cosx = 1 - \frac{x^2}{2!} + ... +(-1)^n\frac{x^{2n}}{(2n)!} + o(x^{2n}) cosx=12!x2+...+(1)n(2n)!x2n+o(x2n)

l n ( 1 + x ) = x − x 2 2 + . . . + ( − 1 ) n − 1 x n n + o ( x n ) ln(1+x) = x - \frac{x^2}{2} + ... +(-1)^{n-1}\frac{x^n}{n} + o(x^n) ln(1+x)=x2x2+...+(1)n1nxn+o(xn)

( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + . . . + m ( m − 1 ) . . . ( m − n + 1 ) n ! x n + o ( x n ) (1+x)^m = 1 + mx + \frac{m(m - 1)}{2!}x^2 + ... +\frac{m(m-1)...(m-n+1)}{n!}x^n + o(x^n) (1+x)m=1+mx+2!m(m1)x2+...+n!m(m1)...(mn+1)xn+o(xn)

t a n x = tanx = tanx=
a r c s i n x = arcsinx = arcsinx=
a r c t a n x = arctanx = arctanx=


导数的应用

函数的单调性

  • f’(x)>0,则f(x)单调增加;
  • f’(x)<0,则f(x)单调减少,

函数的极值

极大值/极小值 均为 极值

条件1:

  • f’(x_0) = 0;
  • x< x_0 时, f’(x) > 0; x> x_0 时, f’(x) < 0, 则 f(x_0)为极大值
  • x< x_0 时, f’(x) < 0; x> x_0 时, f’(x) > 0, 则 f(x_0)为极小值

条件2:

  • f’(x_0) = 0;
  • f’'(x_0) < 0 , 则f(x_0) 为极大值
  • f’'(x_0) > 0 , 则f(x_0) 为极小值

函数的最大值/最小值

  • 第一步: 求出区间(a, b)内的驻点/不可导点
  • 第二步: 求出 f(a)/f(b)/驻点/不可导点 的函数值
  • 第三步: 比较大小

曲线的凹凸性

凹图形: f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 \text {凹图形:} f(\frac{x_1 + x_2}{2}) < \frac{f(x_1) + f(x_2)}{2} 凹图形:f(2x1+x2)<2f(x1)+f(x2)
凸图形: f ( x 1 + x 2 2 ) > f ( x 1 ) + f ( x 2 ) 2 \text {凸图形:} f(\frac{x_1 + x_2}{2}) > \frac{f(x_1) + f(x_2)}{2} 凸图形:f(2x1+x2)>2f(x1)+f(x2)

  • f’'(x) > 0, 则f(x) 的图形是凹的
  • f’'(x) < 0, 则f(x) 的图形是凸的

曲线的拐点

曲线弧上的凹与凸的分界点称为曲线弧的拐点

  • f’‘(x_0) = 0, 且f’'(x_0) 左右异号
  • f’‘(x_0) = 0, 且f’‘’'(x_0) ≠ 0

曲线的渐近线

水平渐近线: lim ⁡ x → ∞ f ( x ) = A , 则 y = A 是曲线的水平渐近线 \text {水平渐近线:} \lim_{x \to \infty}f(x) = A, 则y = A 是曲线的水平渐近线 水平渐近线:xlimf(x)=A,y=A是曲线的水平渐近线
铅直渐近线: lim ⁡ x → x 0 f ( x ) = ∞ , 则 x = x 0 是曲线的铅直渐近线 \text {铅直渐近线:} \lim_{x \to x_0}f(x) = \infty, 则x = x_0 是曲线的铅直渐近线 铅直渐近线:xx0limf(x)=,x=x0是曲线的铅直渐近线
斜渐近线: lim ⁡ x → ∞ f ( x ) x = a , 且 lim ⁡ x → ∞ [ f ( x ) − a x ] = b , 则 y = a x + b 是曲线的斜渐近线 \text {斜渐近线:} \lim_{x \to \infty}\frac{f(x)}{x} = a, 且 \lim_{x \to \infty}[f(x) - ax] = b, 则y = ax + b 是曲线的斜渐近线 斜渐近线:xlimxf(x)=a,xlim[f(x)ax]=b,y=ax+b是曲线的斜渐近线

曲线的弧微分与曲率

弧微分: d s = 1 + y ′ 2 d x \text {弧微分:} ds = \sqrt{1 + y'^2}dx 弧微分:ds=1+y′2 dx
曲率: K = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 / 2 \text {曲率:} K = \frac{|y''|}{(1 + y'^2)^{3/2}} 曲率:K=(1+y′2)3/2y′′
曲率半径: ρ = 1 K \text {曲率半径:} ρ = \frac{1}{K} 曲率半径:ρ=K1




  • 14
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

后海 0_o

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值