python pandas使用sort_index排序

python pandas sort_index()方法专门用于对index排序。下面看一下具体用法:

# 指定了id列为index列
>>> df=pd.read_excel(r'D:/myExcel/1.xlsx', index_col='id')
>>> df
     name  score grade
id                    
a     bog   45.0     A
c   jiken   67.0     B
i     bob   23.0     A
b   jiken   34.0     B
g    lucy    NaN     A
e    tidy   75.0     B

1、对行index排序

# 行index升序排列
>>> df.sort_index()
     name  score grade
id                    
a     bog   45.0     A
b   jiken   34.0     B
c   jiken   67.0     B
e    tidy   75.0     B
g    lucy    NaN     A
i     bob   23.0     A

2、行index降序排列

>>> df.sort_index(ascending=False)
     name  score grade
id                    
i     bob   23.0     A
g    lucy    NaN     A
e    tidy   75.0     B
c   jiken   67.0     B
b   jiken   34.0     B
a     bog   45.0     A

3、给列index排列

>>> df.sort_index(axis=1)
   grade   name  score
id                    
a      A    bog   45.0
c      B  jiken   67.0
i      A    bob   23.0
b      B  jiken   34.0
g      A   lucy    NaN
e      B   tidy   75.0

哈哈,以上就是sort_index()最常见的几种方法。有兴趣欢迎关注公众号:pythonx小工具。一起学习python和pandas
在这里插入图片描述

Pandas 是一个强大的数据分析工具,提供了很多常用的函数来处理数据,下面是一些常用的函数及其用法: 1. read_csv():读取 CSV 文件并返回一个 DataFrame 对象。 2. head():返回 DataFrame 的前几行数据,默认为前 5 行。 3. tail():返回 DataFrame 的后几行数据,默认为后 5 行。 4. info():返回 DataFrame 的基本信息,包括每列的数据类型、非空值数量等。 5. describe():返回 DataFrame 的基本统计信息,包括计数、均值、标准差、最小值、最大值等。 6. shape:返回 DataFrame 的行数和列数。 7. columns:返回 DataFrame 的列名。 8. index:返回 DataFrame 的行索引。 9. loc[]:根据行标签和列标签访问 DataFrame 中的元素。 10. iloc[]:根据行索引和列索引访问 DataFrame 中的元素。 11. dropna():删除 DataFrame 中的缺失值。 12. fillna():用指定的值或方法填充 DataFrame 中的缺失值。 13. groupby():按照指定的列对 DataFrame 进行分组。 14. apply():对 DataFrame 的每一列应用指定的函数。 15. pivot_table():根据指定的列计算 DataFrame 的透视表。 16. merge():将两个 DataFrame 按照指定的列进行合并。 17. sort_values():按照指定的列对 DataFrame 进行排序。 18. drop_duplicates():去除 DataFrame 中的重复行。 19. value_counts():统计 DataFrame 中每个元素出现的次数。 20. isnull():判断 DataFrame 中的元素是否为空值。 这些函数覆盖了 Pandas 中的很多常用操作,掌握它们对于数据分析和处理非常有帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值