1. 搭建一个本地服务器
- 您需要将本地的AI模型封装成一个可以通过网络访问的服务。
- 常用技术:
- Web框架:如 Flask、Django(Python)、Express(Node.js)等,用于创建API接口。
- HTTP协议:通过RESTful API或GraphQL与手机端通信。
- 步骤:
- 在本地电脑上安装并运行AI模型。
- 使用上述框架创建一个简单的Web服务,将AI模型的推理功能封装成API接口(如
/api/predict
)。 - 配置本地服务器,使其能够通过局域网或互联网访问。
2. 配置网络环境
- 如果您希望在手机上访问本地部署的AI模型,需要确保两者在同一局域网内,或者通过互联网进行通信。
- 常用技术:
- 局域网访问:通过Wi-Fi连接同一局域网,使用内网IP地址(如
192.168.x.x
)访问本地服务器。 - 端口转发:如果需要通过外网访问,可以配置路由器的端口映射或使用工具(如 Ngrok、Pagekite)来暴露本地服务到
互联网。
- 局域网访问:通过Wi-Fi连接同一局域网,使用内网IP地址(如
3. 在手机上发起请求
- 手机可以通过HTTP/HTTPS协议向本地服务器发送请求,并获取AI模型的推理结果。
- 常用技术:
- 移动端开发框架:如 Flutter、React Native,用于创建移动应用并集成API调用。
- 原生开发:直接使用Android或iOS SDK编写代码,通过HTTP客户端(如 Retrofit、 Alamofire)发送请求。
4. 数据传输和安全性
- 确保数据在传输过程中是安全的:
- 使用HTTPS协议加密通信。
- 配置身份验证机制(如A