On Adversarial Mixup Resynthesis论文阅读笔记

On Adversarial Mixup Resynthesis

目的

本文主要的工作是利用GAN和MixUp的技术来对两个图像进行混合,生成新的图像,具体效果如下图所示:

在这里插入图片描述

方法细节

无监督部分

首先,利用encoder-decoder模式来在对图像进行提取特征和重构,为了让重构的图像与原始的输入差别尽可能的小,使用了L2 loss
m i n F   E x ∼ p ( x ) ∣ ∣ x − g ( f ( x ) ) ∣ ∣ 2 min_{F}\: E_{x\sim p(x)}||x-g(f(x))||_{2} minFExp(x)xg(f(x))2
在这里, g g g是decoder, f f f是encoder。做这一步的目的是为了后续对 f ( x ) f(x) f(x)做一些更改后输出任然是一个图片,而不是生成乱码。

然后,作者为了让生成的图片更加真实,在这里还利用了GAN里面的detector,并模仿GAN的训练模式,一方面让decoder生成的图像令detector无法分辨,一方面又提高detector的分辨准确率,具体使用俩个loss实现:
m i n F   E x ∼ p ( x ) λ ∣ ∣ x − g ( f ( x ) ) ∣ ∣ 2 + l G A N ( D ( g ( f ( x ) ) ) , 1 ) m a x D   E x ∼ p ( x ) l G A N ( D ( x ) , 1 ) + l G A N ( D ( g ( f ( x ) ) ) , 0 ) min_F\: E_{x\sim p(x)} \lambda||x-g(f(x))||_{2}+l_{GAN}(D(g(f(x))),1)\\ max_D\: E_{x\sim p(x)} l_{GAN}(D(x),1)+l_{GAN}(D(g(f(x))),0) minFExp(x)λxg(f(x))2+lGAN(D(g(f(x))),1)maxDExp(x)lGAN(D(x),1)+lGAN(D(g(f(x))),0)
在这里, l G A N l_{GAN} lGAN是BCELoss,具体可以去看GAN论文。通过这一步,可以让decoder生成的图片越来越像真实图片。

接着,作者又对混合后的图像也使用了GAN技术
m i n F   E x , x ′ ∼ p ( x ) λ ∣ ∣ x − g ( f ( x ) ) ∣ ∣ 2 + l G A N ( D ( g ( f ( x ) ) ) , 1 ) + l G A N ( D ( g ( M i x ( f ( x ) , f ( x ′ ) ) ) ) , 1 ) m a x D   E x , x ′ ∼ p ( x ) l G A N ( D ( x ) , 1 ) + l G A N ( D ( g ( f ( x ) ) ) , 0 ) + l G A N ( D ( g ( M i x ( f ( x ) , f ( x ′ ) ) ) ) , 0 ) min_F\: E_{x,x'\sim p(x)} \lambda||x-g(f(x))||_{2}+l_{GAN}(D(g(f(x))),1)+l_{GAN}(D(g(Mix(f(x),f(x')))),1)\\ max_D\: E_{x,x'\sim p(x)} l_{GAN}(D(x),1)+l_{GAN}(D(g(f(x))),0)+l_{GAN}(D(g(Mix(f(x),f(x')))),0) minFEx,xp(x)λxg(f(x))2+lGAN(D(g(f(x))),1)+lGAN(D(g(Mix(f(x),f(x)))),1)maxDEx,xp(x)lGAN(D(x),1)+lGAN(D(g(f(x))),0)+lGAN(D(g(Mix(f(x),f(x)))),0)
这里的 M i x ( . , . ) Mix(. , .) Mix(.,.)函数就是利用了MixUp技术,具体表示为:
M i x ( h 1 , h 2 ) = α h 1 + ( 1 − α ) h 2 Mix(h1,h2)=\alpha h1 + (1-\alpha)h2 Mix(h1,h2)=αh1+(1α)h2
具体可以看MixUp和manifold MixUp 这两篇论文。

在这里插入图片描述

该方法是基于无监督的,可以自动生成两种输入图像的混合模式。

有监督部分

首先,对于一个标签,作者使用了MLP对他进行编码后得到一个伯努利分布的参数 P P P,并利用该参数进行伯努利采样得到一个和隐层特征channel数目相同的mask m m m,接着用这个 m m m对隐层进行MixUp得到混合的特征,具体如下图所示:

在这里插入图片描述

为了方便记录,作者将该过程写为 h ~ m i x = M i x s u p ( h 1 , h 2 , y ~ m i x ) \tilde{h}_{mix}=Mix_{sup}(h_1,h_2,\tilde{y}_{mix}) h~mix=Mixsup(h1,h2,y~mix),且记 y ~ m i x = α y 1 + ( 1 − α ) y 2 \tilde{y}_{mix}=\alpha y_1+(1-\alpha)y_2 y~mix=αy1+(1α)y2

该过程的loss为:
m i n F   E x 1 , y 1 ∼ p ( x , y ) , x 2 , y 2 ∼ p ( x , y ) , α ∼ U ( 0 , 1 ) l G A N ( D ( g ( h ~ m i x ) ) , 1 ) + l c l s ( p ( y ∣ g ( h ~ m i x ) ) , y ~ m i x ) m i n D   E x 1 , y 1 ∼ p ( x , y ) , x 2 , y 2 ∼ p ( x , y ) , α ∼ U ( 0 , 1 ) l G A N ( D ( g ( h ~ m i x ) ) , 0 ) min_{F}\:E_{x_1,y_1\sim p(x,y),x_2,y_2\sim p(x,y),\alpha\sim U(0,1)}l_{GAN}(D(g(\tilde{h}_{mix})),1)+l_{cls}(p(y|g(\tilde{h}_{mix})),\tilde{y}_{mix})\\ min_{D}\:E_{x_1,y_1\sim p(x,y),x_2,y_2\sim p(x,y),\alpha\sim U(0,1)}l_{GAN}(D(g(\tilde{h}_{mix})),0) minFEx1,y1p(x,y),x2,y2p(x,y),αU(0,1)lGAN(D(g(h~mix)),1)+lcls(p(yg(h~mix)),y~mix)minDEx1,y1p(x,y),x2,y2p(x,y),αU(0,1)lGAN(D(g(h~mix)),0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值