[ICLR 18]mixup: BEYOND EMPIRICAL RISK MINIMIZATION
Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin and David Lopez-Paz
from MIT & FAIR
Overview
这篇文章提出了一种新的数据扩展方法。该方法简单有效。同时作者在文章中进行了详细的理论分析和实验分析,很有阅读价值。
Motivation
从ERM到VRM
当前网络优化方法大多遵循经验风险最小化方法(Empirical Risk Minimization, ERM),即使用采样的样本来估计训练集整体误差。一个对ERM的简明解释可以参考这里。[1]的研究证明模型体量固定,数据量足够,即可保证使用ERM时训练的收敛性。如今网络体量都很大,这就造成:
- 网络倾向于记忆训练样板,而不是泛化[2];
- 难以抵御分布外样本,如肉眼感官没有区别的对抗样本[3]。
解决这一问题的一个途径就是使用邻域风险最小化原则(Vicinal Risk Minimization, VRM),即通过先验知识构造训练样本在训练集分布上的邻域值。通常做法就是传统的数据拓展,如翻转,旋转,放缩等。但是这种做法过于依赖特定数据库,此外需要人类的先验知识 。
Method
本文的贡献是提出一种新的数据扩展方式,即使用线性插值的方法得到新的扩展数据。假设 (x