[深度学习论文笔记][ICLR 18]mixup: BEYOND EMPIRICAL RISK MINIMIZATION

本文介绍了ICLR 18论文《mixup:超越经验风险最小化》的内容,提出了一种新颖的数据增强方法,通过线性插值创建训练样本的混合数据,以改善深度学习模型的泛化能力和对抗攻击抵抗力。实验表明,这种方法能有效提升图像分类任务的精度,降低对噪声标签的过拟合,增强模型对对抗样本的鲁棒性,并有助于GAN训练的稳定性。
摘要由CSDN通过智能技术生成

[ICLR 18]mixup: BEYOND EMPIRICAL RISK MINIMIZATION

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin and David Lopez-Paz

from MIT & FAIR

paper link

Overview

这篇文章提出了一种新的数据扩展方法。该方法简单有效。同时作者在文章中进行了详细的理论分析和实验分析,很有阅读价值。

Motivation

从ERM到VRM

当前网络优化方法大多遵循经验风险最小化方法(Empirical Risk Minimization, ERM),即使用采样的样本来估计训练集整体误差。一个对ERM的简明解释可以参考这里。[1]的研究证明模型体量固定,数据量足够,即可保证使用ERM时训练的收敛性。如今网络体量都很大,这就造成:

  1. 网络倾向于记忆训练样板,而不是泛化[2];
  2. 难以抵御分布外样本,如肉眼感官没有区别的对抗样本[3]。

解决这一问题的一个途径就是使用邻域风险最小化原则(Vicinal Risk Minimization, VRM),即通过先验知识构造训练样本在训练集分布上的邻域值。通常做法就是传统的数据拓展,如翻转,旋转,放缩等。但是这种做法过于依赖特定数据库,此外需要人类的先验知识 。

Method

本文的贡献是提出一种新的数据扩展方式,即使用线性插值的方法得到新的扩展数据。假设 (x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值