cellpose安装使用学习过程记录

1.GPU pytorch安装

在官网中找到自己适合的版本:PyTorch

复制下方的语句到cmd执行,挂个梯子会更快,但是也有说挂梯子会报错的,我是没有报错。

2.cellpose安装
python -m pip install cellpose
3.使用

准备好需要的环境

from cellpose import utils, io, models
from cellpose import plot

import numpy as np
from scipy import ndimage
import pandas as pd
%matplotlib inline


mpl.rcParams['figure.dpi'] = 300

 包装成函数。

chan参数需要自己设定好,假设输入为[x,y],x为胞质通道,y为胞核通道。按照rgb的顺序标记为1,2,3,如果在你的图像中胞质为绿色,则x=2,其他的同理。如果确定不了就写0

如果感觉分割出来的结果有很多假阴性,那就把flow_threshold设置大一些,反之设置小一些

def sig(filename,gpu=False,save=False,diameter=0,flow_threshold=0.6,cellprob_threshold=-1):
    img = io.imread(filename)
    #胞质,核
    chan=[0,3]
    model = models.Cellpose(gpu=gpu, model_type='cyto')
    masks, flows, styles, diams = model.eval(img, diameter=diameter, 
                                             flow_threshold=flow_threshold,cellprob_threshold=cellprob_threshold, channels=chan)
    if save!=False :
        io.masks_flows_to_seg(img, masks, flows, diams, filename, chan)
        io.save_to_png(img, masks, flows, filename)
    # display results
    fig = plt.figure(figsize=(12,5))
    plot.show_segmentation(fig, img, masks, flows[0], channels=chan)
    plt.tight_layout()
    plt.show()
    return masks
mask = sig("./tmp.png",save=False,gpu=True)

### CellPose 安装使用指南 (适用于 Mac OS) #### 1. 环境准备 为了确保 CellPose 能够顺利运行,在安装之前需确认操作系统环境已准备好。对于 macOS 用户来说,建议先通过 Homebrew 或 Anaconda 来管理依赖项。 如果选择 Anaconda,则可以通过创建一个新的 Python 环境来隔离不同项目的库文件: ```bash conda create --name cellpose_env python=3.8 conda activate cellpose_env ``` 这一步骤有助于防止版本冲突并简化后续操作[^1]。 #### 2. 安装 CellPose 完成上述准备工作之后,可以利用 pip 工具直接从 PyPI 上获取最新发布的 CellPose 版本: ```bash pip install cellpose ``` 或者克隆 GitHub 仓库中的源码来进行本地编译安装(推荐开发者或希望参与贡献的人采用此方式): ```bash git clone https://github.com/MouseLand/cellpose.git cd cellpose pip install . ``` 值得注意的是,由于目标操作系统已被指定为 darwin- 对应于 Mac OS X ,因此无需额外设置跨平台参数。 #### 3. 使用 GUI 应用程序 CellPose 提供了一个图形界面工具,方便用户处理图像数据集而不需要编写脚本代码。启动该应用程序的方法如下所示: ```python from cellpose import gui gui.run() ``` 这段简单的 Python 命令将会弹出一个窗口让用户加载图片、调整分割参数以及保存结果等。 #### 4. 解决常见错误提示 有时可能会遇到类似于 Eclipse 中报告的 JNI 错误信息:“A JNI error has occurred”。这类问题通常是因为 Java 和 Python 的交互出现了异常。针对这种情况,可尝试重新安装 JDK 并配置好 JAVA_HOME 变量;另外也可以考虑更新至更高版本的 jupyter notebook/ipython kernel 以获得更好的兼容性支持[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值