【机器学习】算法原理详细推导与实现(三):朴素贝叶斯

【机器学习】算法原理详细推导与实现(三):朴素贝叶斯

在上一篇算法中,逻辑回归作为一种二分类的分类器,一般的回归模型也是是判别模型,也就根据特征值来求结果概率。形式化表示为 p ( y ∣ x ; θ ) p(y|x;\theta) p(yx;θ),在参数 θ \theta θ 确定的情况下,求解条件概率 p ( y ∣ x ) p(y|x) p(yx) 。通俗的解释为:在给定特定特征后预测结果出现的概率。逻辑回归的 y y y 是离散型,取值为 { 0 , 1 } \{0,1\} {0,1} 。这里将要介绍另一个分类算法 朴素贝叶斯,用以解决 x x x 是离散型的数据,这是判别模型,也是一个生成学习算法。

贝叶斯定理

定理推导

朴素贝叶斯是基于贝叶斯原理得到的。假设A和B为两个不相互独立的事件:

由上图可以看出,在事件B已经发生的情况下,事件A发生的概率为事件A和事件B的交集除以事件B:

p ( A ∣ B ) = p ( A ⋂ B ) p ( B ) p(A|B)=\frac{p(A\bigcap B)}{p(B)} p(AB)=p(B)p(AB)

同理,在事件A已经发生的情况下,事件B发生的概率为事件A和事件B的交集除以事件A:

p ( B ∣ A ) = p ( B ⋂ A ) p ( A ) p(B|A)=\frac{p(B\bigcap A)}{p(A)} p(BA)=p(A)p(BA)

结合这两个方程式,我们可以得到:

p ( A ∣ B ) p ( B ) = p ( A ⋂ B ) = p ( B ∣ A ) p ( A ) p(A|B)p(B)=p(A\bigcap B)=p(B|A)p(A) p(AB)p(B)=p(AB)=p(BA)p(A)

转换后贝叶斯定理的公式定义为:

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

总的来说,贝叶斯定理可以总结为:

  1. 贝叶斯定理是将先验概率做一次更新,得到后验概率
  2. 朴素贝叶斯是输入先验概率,找到后验概率,最后找到最大后验概率,作为最终的分类结果,以及分类概率

实际问题

假设我们有两个装满了饼干的碗,第一个碗里有10个巧克力饼干和30个普通饼干,第二个碗里两种饼干都有20个。我们随机挑一个碗,再在碗里随机挑饼干。那么我们挑到的普通饼干来自一号碗的概率有多少?

解决方案

我们用 x1 代表一号碗,x2 代表二号碗。在x1中取到普通饼干的概率是 P ( y ∣ x 1 ) = 30 10 + 30 × 1 2 P(y|x1)=\frac{30}{10+30}\times\frac{1}{2} P(yx1)=10+3030×21,即抽到x1的概率是 1 2 \frac{1}{2} 21 ,再在x1中抽到普通饼干的概率是 30 10 + 30 = 3 4 \frac{30}{10+30}=\frac{3}{4} 10+3030=43 ,同理可得 P ( y ∣ x 2 ) = 20 20 + 20 × 1 2 P(y|x2)=\frac{20}{20+20}\times\frac{1}{2} P(yx2)=20+2020×21 。而问题中挑到挑到的普通饼干来自一号碗,已知挑到普通饼干,那么这个普通饼干来自一号碗的概率为:

P ( x 1 ∣ y ) = P ( y ∣ x 1 ) P ( x 1 ) P ( y ) P(x1|y) = \frac{P(y|x1)P(x1)}{P(y)} P(x1y)=P(y)P(yx1)P(x1)

根据 全概率公式 可知,其中拿到普通饼干的概率为: P ( y ) = P ( y ∣ x 1 ) P ( x 1 ) + P ( y ∣ x 2 ) P ( x 2 ) P(y)=P(y|x1)P(x1)+ P(y|x2)P(x2) P(y)=P(yx1)P(x1)+P(yx2)P(x2)

计算为:

P ( x 1 ∣ y ) = P ( y ∣ x 1 ) P ( x 1 ) P ( y ) = P ( y ∣ x 1 ) P ( x 1 ) P ( y ∣ x 1 ) P ( x 1 ) + P ( y ∣ x 2 ) P ( x 2 ) = 0.75 × 0.5 0.75 × 0.5 + 0.5 × 0.5 = 0.6 \begin{aligned} P(x1|y)&=\frac{P(y|x1)P(x1)}{P(y)} \\ &=\frac{P(y|x1)P(x1)}{P(y|x1)P(x1)+ P(y|x2)P(x2)} \\ &= \frac{0.75\times0.5}{0.75\times0.5+0.5\times0.5} \\ &=0.6 \end{aligned} P(x1y)=P(y)P(yx1)P(x1)=P(yx1)P(x1)+P(yx2)P(x2)P(yx1)P(x1)=0.75×0.5+0.5×0.50.75×0.5=0.6

朴素贝叶斯

例如如果想实现一个垃圾邮件分类器,用邮件作为输入,确定邮件是否为垃圾邮件作为输出,即 y ∈ { 0 , 1 } y\in \{0,1\} y{0,1},1表示是垃圾邮件0表示不是垃圾邮件,那么问题来了:给你一封邮件,怎么将邮件转化为特征向量 x ⃗ \vec x x 来表示这个邮件,以及怎样区分这封邮件是否是垃圾邮件

电子邮件仅仅是一段文本,就像是一个词列表,因此利用词来构建特征向量 x ⃗ \vec x x 。首先遍历词典,并且得到一个词典中词的列表,假设词典中此的列表如下所示:

word_1
word_2
word_3
word_n

假设邮件中存在字典中的词,那么特征向量 x ⃗ \vec x x 就就记为1,不存在就记为0。例如邮件中假设存在词 [ w o r d 1 , w o r d 2 , . . . , w o r d n ] [word_1,word_2,...,word_n] [word1,word2,...,wordn] ,则该邮件的特征向量 x ⃗ \vec x x 表示为:

x = [ 1 1 0 . . . 1 ] x= \begin{bmatrix} 1 \\ 1 \\ 0 \\ ... \\ 1 \end{bmatrix} x=110...1

则 $x\in {0,1}^n $ ,假设词典的长度为50000,那么 x x x 就可能有 2 50000 2^{50000} 250000 种向量。如果需要简历多项式用回归模型进行建模分类,那么可能需要 2 50000 − 1 2^{50000-1} 2500001 个参数 θ \theta θ,很明显看出需要的参数太多了,如果使用梯度下降那么收敛将会非常慢,因此利用朴素贝叶斯算法是一个很好的选择。

算法推导

在朴素贝叶斯算法中,我们会对 p ( x ∣ y ) p(x|y) p(xy) 做一个假设,假设给定 y y y 的时候,其中 x ∈ { 0 , 1 } 50000 x \in \{0,1\}^{50000} x{0,1}50000 x i x_i xi 是条件独立的,根据链式法则可以得到:

p ( x 1 , x 2 , . . . , x 50000 ∣ y ) = p ( x 1 ∣ y ) p ( x 1 ∣ y , x 1 ) p ( x 2 ∣ y , x 1 , x 2 ) . . . p ( x 5 0000 ∣ y , x 1 , x 2 , . . . , x 49999 ) = p ( x 1 ∣ y ) p ( x 2 ∣ y ) . . . p ( x 50000 ∣ y ) = ∏ i = 1 n p ( x i ∣ y ) \begin{aligned} p(x_1,x_2,...,x_{50000}|y)&=p(x_1|y)p(x_1|y,x_1)p(x_2|y,x_1,x_2)...p(x_50000|y,x_1,x_2,...,x_{49999}) \\ &=p(x_1|y)p(x_2|y)...p(x_{50000}|y) \\ &=\prod_{i=1}^n p(x_i|y) \end{aligned} p(x1,x2,...,x50000y)=p(x1y)p(x1y,x1)p(x2y,x1,x2)...p(x50000y,x1,x2,...,x49999)=p(x1y)p(x2y)...p(x50000y)=i=1np(xiy)

为了拟合出模型的参数,符号假设为,其中 y = 1 y=1 y=1 是垃圾邮件, y = 0 y=0 y=0 是正常邮件:

ϕ i ∣ y = 1 = p ( x i = 1 ∣ y = 1 ) ϕ i ∣ y = 0 = p ( x i = 1 ∣ y = 0 ) ϕ y = p ( y = 1 ) \phi_{i|y=1}=p(x_i=1|y=1) \phi_{i|y=0}=p(x_i=1|y=0) \phi_y=p(y=1) ϕiy=1=p(xi=1y=1)ϕiy=0=p(xi=1y=0)ϕy=p(y=1)

假设存在 m m m 个样本,那么 y = 1 y=1 y=1 y = 0 y=0 y=0 的组合起来的似然估计表示为:

L ( ϕ y , ϕ i ∣ y = 0 , ϕ i ∣ y = 1 ) = ∏ i = 1 m p ( x ( i ) ∣ y ( i ) ) L(\phi_y,\phi_{i|y=0},\phi_{i|y=1})=\prod_{i=1}^m p(x^{(i)}|y^{(i)}) L(ϕy,ϕiy=0,ϕiy=1)=i=1mp(x(i)y(i))

假设训练样本为 m m m 封邮件, x j = 1 x_j=1 xj=1表示包含关键词 j j j x j = 0 x_j=0 xj=0表示不包含关键词 j j j,则垃圾邮件 y = 1 y=1 y=1 里面包含的单词 j j j 的极大似然估计为:

ϕ j ∣ y = 1 = ∑ i = 1 m l { x j ( i ) ⋂ y ( i ) = 1 } ∑ i = 1 m l { y ( i ) = 1 } \phi_{j|y=1}=\frac{\sum_{i=1}^ml\{x_j^{(i)}\bigcap y^{(i)}=1\}}{\sum_{i=1}^ml\{y^{(i)}=1\}} ϕjy=1=i=1ml{y(i)=1}i=1ml{xj(i)y(i)=1}

上述公式中,分子的含义是从 1到 m m m 遍历垃圾邮件内容,对于标签 x j = 1 x_j=1 xj=1的邮件计算其中词语 j j j 出现的邮件数目之和。换句话说就是,遍历所有垃圾邮件,统计这些垃圾邮件中包含词语 j j j 的邮件数目。分母是对 i i i 从1到 m m m 求和,最后得到垃圾邮件的总数,即分母就是垃圾邮件的数目。

同理,正常邮件 y = 0 y=0 y=0 里面包含的单词 j j j 的极大似然估计为:

ϕ j ∣ y = 0 = ∑ i = 1 m l { x j ( i ) = 1 ⋂ y ( i ) = 0 } ∑ i = 1 m l { y ( i ) = 0 } \phi_{j|y=0}=\frac{\sum_{i=1}^ml\{x_j^{(i)}=1\bigcap y^{(i)}=0\}}{\sum_{i=1}^ml\{y^{(i)}=0\}} ϕjy=0=i=1ml{y(i)=0}i=1ml{xj(i)=1y(i)=0}

垃圾邮件 y = 1 y=1 y=1 的极大似然估计为:

ϕ j ∣ y = 1 = ∑ i = 1 m l { x j ( i ) = 1 ⋂ y ( i ) = 1 } ∑ i = 1 m l { y ( i ) = 1 } \phi_{j|y=1}=\frac{\sum_{i=1}^ml\{x_j^{(i)}=1\bigcap y^{(i)}=1\}}{\sum_{i=1}^ml\{y^{(i)}=1\}} ϕjy=1=i=1ml{y(i)=1}i=1ml{xj(i)=1y(i)=1}

假设 m m m 封邮件里面的词向量 x ⃗ \vec x x 和标识 y y y 如下所示:

( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) , . . . , ( x ( m ) , y ( m ) ) (x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)}) (x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))

所以当垃圾邮件分类器开始训练时,假设训练垃圾邮件中包含某些词 x x x 的概率 p ( y = 1 ∣ x ) p(y=1|x) p(y=1x)

p ( y = 1 ∣ x ) = p ( x ∣ y = 1 ) p ( y = 1 ) p ( x ) = ( ∏ i = 1 n p ( x i ∣ y = 1 ) ) p ( y = 1 ) ( ∏ i = 1 n p ( x i ∣ y = 1 ) ) p ( y = 1 ) + ( ∏ i = 0 n p ( x i ∣ y = 0 ) ) p ( y = 0 ) \begin{aligned} p(y=1|x)&=\frac{p(x|y=1)p(y=1)}{p(x)} \\ &=\frac{(\prod_{i=1}^n p(x_i|y=1))p(y=1)}{(\prod_{i=1}^n p(x_i|y=1))p(y=1)+(\prod_{i=0}^n p(x_i|y=0))p(y=0)} \end{aligned} p(y=1x)=p(x)p(xy=1)p(y=1)=(i=1np(xiy=1))p(y=1)+(i=0np(xiy=0))p(y=0)(i=1np(xiy=1))p(y=1)

上式中分母是由 全概率 计算出词 p ( x ) p(x) p(x) 的概率,即假设 w o r d 3 word_3 word3 在垃圾邮件中没有出现,那么可以得到:

p ( y = 1 ∣ x ) = p ( x ∣ y = 1 ) p ( y = 1 ) p ( x ) = ( ∏ i = 1 50000 p ( x 3 ∣ y = 1 ) ) p ( y = 1 ) ( ∏ i = 1 50000 p ( x 3 ∣ y = 1 ) ) p ( y = 1 ) + ( ∏ i = 0 n p ( x i ∣ y = 0 ) ) p ( y = 0 ) = 0 0 + 0 \begin{aligned} p(y=1|x)&=\frac{p(x|y=1)p(y=1)}{p(x)} \\ &=\frac{(\prod_{i=1}^{50000} p(x_3|y=1))p(y=1)}{(\prod_{i=1}^{50000} p(x_3|y=1))p(y=1)+(\prod_{i=0}^n p(x_i|y=0))p(y=0)} \\ &=\frac{0}{0+0} \end{aligned} p(y=1x)=p(x)p(xy=1)p(y=1)=(i=150000p(x3y=1))p(y=1)+(i=0np(xiy=0))p(y=0)(i=150000p(x3y=1))p(y=1)=0+00

这就意味着如果 w o r d 3 word_3 word3 在垃圾邮件中没有出现,那么概率为0,这样子很明显是不合理的,无论在数学上会导致无法继续计算,还是从概率的角度来说直接排除 w o r d 3 word_3 word3 的可能性,其实最好的是 w o r d 3 word_3 word3 没出现,但是还是会有概率,只是概率很低很低。举个例子来说,如果某个人投篮球,连续5次都是没投中,那么是不是投中的概率为0了,没投中的概率是1了?

为了修正这个方法,这里最好是在分子分母加上一个极小数,防止数学上的无效计算和实际中的绝对不可能发生。

拉普拉斯平滑(Laplace smoothing)

继续上面投篮球的例子,假设没投中的概率记为 p ( y = 0 ) p(y=0) p(y=0) ,投中的概率记为 p ( y = 1 ) p(y=1) p(y=1) ,原来的概率为:

p ( y = 0 ) = 没 投 中 的 次 数 投 篮 球 的 总 次 数 = 没 投 中 的 次 数 投 中 的 次 数 + 没 投 中 的 次 数 = 0 5 + 0 \begin{aligned} p(y=0)&=\frac{没投中的次数}{投篮球的总次数} \\ &=\frac{没投中的次数}{投中的次数+没投中的次数} \\ &=\frac{0}{5+0} \end{aligned} p(y=0)==+=5+00

如果给每一项都平滑一个极小数1,代表投中篮球和没投中篮球在事先都已经发生过一次了,那么上述式子变成:

p ( y = 0 ) = 0 + 1 ( 5 + 1 ) + ( 0 + 1 ) = 1 7 \begin{aligned} p(y=0)&=\frac{0+1}{(5+1)+(0+1)} \\ &=\frac{1}{7} \end{aligned} p(y=0)=(5+1)+(0+1)0+1=71

那么同理可以知道, m m m 封邮件中, x j = 1 x_j=1 xj=1表示包含关键词 j j j x j = 0 x_j=0 xj=0表示不包含关键词 j j j,则垃圾邮件 y = 1 y=1 y=1 里面包含的单词 j j j 的极大似然估计为:

ϕ j ∣ y = 1 = ∑ i = 1 m l { x j ( i ) ⋂ y ( i ) = 1 } + 1 ∑ i = 1 m l { y ( i ) = 1 } + 2 \phi_{j|y=1}=\frac{\sum_{i=1}^ml\{x_j^{(i)}\bigcap y^{(i)}=1\}+1}{\sum_{i=1}^ml\{y^{(i)=1}\}+2} ϕjy=1=i=1ml{y(i)=1}+2i=1ml{xj(i)y(i)=1}+1

正常邮件 y = 0 y=0 y=0 里面包含的单词 j j j 的极大似然估计为:

ϕ j ∣ y = 0 = ∑ i = 1 m l { x j ( i ) = 1 ⋂ y ( i ) = 0 } + 1 ∑ i = 1 m l { y ( i ) = 0 } + 2 \phi_{j|y=0}=\frac{\sum_{i=1}^ml\{x_j^{(i)}=1\bigcap y^{(i)}=0\}+1}{\sum_{i=1}^ml\{y^{(i)}=0\}+2} ϕjy=0=i=1ml{y(i)=0}+2i=1ml{xj(i)=1y(i)=0}+1

因为 y y y 只有两种可能,我们这里也假设事先存在一封垃圾邮件和一封正常邮件,所以分子只需要+1,分母只需要+2。

总结

总的来说,朴素贝叶斯训练阶段为,给定一组已知的训练样本 ( x 1 ⃗ , y 1 ) , ( x 2 ⃗ , y 2 ) , . . . , ( x n ⃗ , y n ) (\vec{x_1},y_1),(\vec{x_2},y_2),...,(\vec{x_n},y_n) (x1 ,y1),(x2 ,y2),...,(xn ,yn),可以得到垃圾邮件中,每一个单词出现的概率

p ( x ∣ y ) = ( ∏ i = 1 n p ( x i ∣ y i ) p(x|y)=(\prod_{i=1}^{n}p(x_i|y_i) p(xy)=(i=1np(xiyi)

而在 预测阶段 ,给定一封邮件的单词向量 x ⃗ \vec x x ,求这个邮件是否是垃圾邮件,那么问题就转化为:已知单词 x ⃗ \vec x x 已经发生,求解是否垃圾邮件p(y|x):

a r g m a x y p ( y ∣ x ) = a r g m a x y p ( x ∣ y ) p ( y ) p ( x ) a r g m a x y p ( x ∣ y ) p ( y ) argmax_yp(y|x)=argmax_y \frac{p(x|y)p(y)}{p(x)}argmax_y p(x|y)p(y) argmaxyp(yx)=argmaxyp(x)p(xy)p(y)argmaxyp(xy)p(y)

上述中, x x x 的取值只能是 x ∈ { 0 , 1 } x \in \{0,1 \} x{0,1} n n n的长度应该等于词典中词的数目。

实例

朴素贝叶斯是一个非常优秀的文本分类器,现在大部分垃圾邮件过滤的底层也是基于贝叶斯思想。作者收集了 25 封垃圾邮件, 25 封正常邮件,取 40 封邮件做训练,10 封邮件做测试。

加载数据:

# 打开数据集,获取邮件内容,
# spam为垃圾邮件,ham为正常邮件
def loadData():
    # 选取一部分邮件作为测试集
    testIndex = random.sample(range(1, 25), 5)

    dict_word_temp = []

    testList = []
    trainList = []
    testLabel = []
    trainLabel = []

    for i in range(1, 26):
        wordListSpam = textParse(open('./email/spam/%d.txt' % i, 'r').read())
        wordListHam = textParse(open('./email/ham/%d.txt' % i, 'r').read())
        dict_word_temp = dict_word_temp + wordListSpam + wordListHam

        if i in testIndex:
            testList.append(wordListSpam)
            # 用1表示垃圾邮件
            testLabel.append(1)
            testList.append(wordListHam)
            # 用0表示正常邮件
            testLabel.append(0)
        else:
            trainList.append(wordListSpam)
            # 用1表示垃圾邮件
            trainLabel.append(1)
            trainList.append(wordListHam)
            # 用0表示正常邮件
            trainLabel.append(0)

    # 去重得到词字典
    dict_word = list(set(dict_word_temp))
    trainData = tranWordVec(dict_word, trainList)
    testData = tranWordVec(dict_word, testList)

    return trainData, trainLabel, testData, testLabel

训练函数为:

# 训练函数
def train(trainData, trainLabel):
    trainMatrix = np.array(trainData)

    # 计算训练的文档数目
    trainNum = len(trainMatrix)
    # 计算每篇文档的词条数
    wordNum = len(trainMatrix[0])
    # 文档属于垃圾邮件类的概率
    ori_auc = sum(trainLabel) / float(trainNum)
    
    # 拉普拉斯平滑
    # 分子+1
    HamNum = np.ones(wordNum)
    SpamNum = np.ones(wordNum)
    # 分母+2
    HamDenom = 2.0
    SpamDenom = 2.0

    for i in range(trainNum):
        # 统计属于垃圾邮件的条件概率所需的数据,即P(x0|y=1),P(x1|y=1),P(x2|y=1)···
        if trainLabel[i] == 1:
            SpamNum += trainMatrix[i]
            SpamDenom += sum(trainMatrix[i])
        else:
            # 统计属于正常邮件的条件概率所需的数据,即P(x0|y=0),P(x1|y=0),P(x2|y=0)···
            HamNum += trainMatrix[i]
            HamDenom += sum(trainMatrix[i])
    # 取对数,防止下溢出
    SpamVec = np.log(SpamNum / SpamDenom)
    HamVec = np.log(HamNum / HamDenom)
    # 返回属于正常邮件类的条件概率数组,属于垃圾邮件类的条件概率数组,文档属于垃圾邮件类的概率
    return HamVec, SpamVec, ori_auc

预测函数:

# 预测函数
def predict(testDataVec, HamVec, SpamVec, ori_auc):
    predictToSpam = sum(testDataVec * SpamVec) + np.log(ori_auc)
    predictToHam = sum(testDataVec * HamVec) + np.log(1.0 - ori_auc)
    if predictToSpam > predictToHam:
        return 1
    else:
        return 0

预测错误一个,错误率 10% ,正确率 90%

数据和代码下载请关注公众号【 TTyb 】,后台回复【 机器学习 】即可获取

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值