牛顿法
牛顿法是一种近似求解方程的方法,方法使用函数f(x)的泰勒展开前几项来寻找f(x)=0的根。
1.具体步骤:
- 选择一个接近f(x)零点的x0和切线斜率f’(x0),然后计算穿过(x0,f(x0))并且斜率为f’(x0)的直线与x轴交点x坐标,即求解:

-再选择一个x1比x0更接近f(x)=0的解,令x–>x1,开始迭代:

remark: 已经证明若f’为连续,并且待求的零点为孤立的,那么零点X存在一个区域,只要初始值X0在该区域内,那么牛顿法必定收敛。
- 当N>1时,二阶泰勒展开得到:

同样求极小值,其中必要条件为必是函数的驻点,即

(g为梯度