Used-car-Task-3

简介

天池 数据挖掘入门-二手车交易价格预测
地址 https://tianchi.aliyun.com/competition/entrance/231784/information
目标 特征工程

步骤

引入模块

%matplotlib inline作用:具体作用是当你调用matplotlib.pyplot的绘图函数plot()进行绘图的时候,或者生成一个figure画布的时候,可以直接在你的python console里面生成图像。

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter
# 模仿命令行来访问magic函数的在IPython中独有的形式
%matplotlib inline

# 载入数据
path = 'E:\Train_Test_data\second_hand_car'
Train_data = pd.read_csv(path+'\\used_car_train_20200313.csv',sep=' ')
Test_data = pd.read_csv(path+'\\used_car_testA_20200313.csv',sep=' ')
print(Train_data.shape)
print(Test_data.shape)

删除异常值

# 删除异常值

# 处理异常值的函数
def outliers_proc(data,col_name,scale=3):
    """
    用于清洗异常值,默认用box_plot(scale=3)进行清洗(这里不懂?)
    :param data:接受pandas数据格式
    :param col_name:列名
    :param scale:尺度
    :returm
    """
    def box_plot_outliers(data_ser, box_scale):
        """
        利用箱型图去除异常值
        :param data_ser:接受pandas.Series数据格式
        :param box_scale:箱型图尺度
        :return:
        """
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
        val_low = data_ser.quantile(0.25) - iqr
        val_up = data_ser.quantile(0.75) + iqr
        rule_low = (data_ser < val_low)
        rule_up = (data_ser > val_up)
        return (rule_low , rule_up),(val_low,val_up)
    data_n = data.copy()
    data_series = data_n[col_name]
    rule , value = box_plot_outliers(data_series , box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
    print('Delete number is:{}'.format(len(index)))
    data_n = data_n.drop(index)
    data_n.reset_index(drop=True , inplace=True)
    print('Now column number is :{}'.format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    print('Description of data less than the lower bound is:')
    print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    print('Description of data larger than the upper bound is:')
    print(pd.Series(outliers).describe())
    
    fig , ax = plt.subplots(1,2,figsize=(10,7))
    sns.boxplot(y=data[col_name] , data=data , palette='Set1' , ax=ax[0])
    sns.boxplot(y=data_n[col_name] , data=data_n , palette='Set1' , ax=ax[1])
    return data_n
    # 删除异常值
Train_data = outliers_proc(train , 'power' , scale=3)

特征构造

# 训练稽核测试集放一起,方便构造特征
Train_data['train']=1
Test_data['train']=0
data = pd.concat([Train_data, Test_data], ignore_index=True)

# 使用时长:data['creatDate'] - data['regDate'],反应汽车使用时间,一般来说价格与使用时间成反比
# 时间格式不对,使用:errors = 'coerce',.dt.days转天数
data['used_time'] = (pd.to_datetime(data['creatDate'] , format='%Y%m%d' ,errors = 'coerce' ) - pd.to_datetime(data['regDate'] , format='%Y%m%d' ,errors = 'coerce')).dt.days

# 看一下空数据,有 15k 个样本的时间是有问题的,我们可以选择删除,也可以选择放着。
# 但是这里不建议删除,因为删除缺失数据占总样本量过大,7.5%
# 我们可以先放着,因为如果我们 XGBoost 之类的决策树,其本身就能处理缺失值,所以可以不用管;
data['used_time'].isnull().sum()

# 从邮编中提取城市信息,加入先验知识,德国的邮编
data['city'] = data['regionCode'].apply(lambda x : str(x)[:-3])
data=data

# 计算品牌销售量
Train_gb = Train_data.groupby("brand")
all_info = {}
for kind, kind_data in Train_gb:
    info = {}
    kind_data = kind_data[kind_data['price'] > 0]
    info['brand_amount'] = len(kind_data)
    info['brand_price_max'] = kind_data.price.max()
    info['brand_price_median'] = kind_data.price.median()
    info['brand_price_min'] = kind_data.price.min()
    info['brand_price_sum'] = kind_data.price.sum()
    info['brand_price_std'] = kind_data.price.std()
    info['brand_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)
    all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "brand"})
data = data.merge(brand_fe, how='left', on='brand')

# 数据分桶 以 power 为例
# 这时候我们的缺失值也进桶了,
# 为什么要做数据分桶呢,原因有很多,= =
# 1. 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
# 2. 离散后的特征对异常值更具鲁棒性,如 age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
# 3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
# 4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
# 5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化

# 当然还有很多原因,LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性
bin = [i*10 for i in range(31)]
data['power_bin'] = pd.cut(data['power'] , bin , labels=False)
data[['power_bin' , 'power']].head()

# 删除不需要的数据
data = data.drop(['creatDate', 'regDate', 'regionCode'], axis=1)

# 目前的数据其实已经可以给树模型使用了,所以我们导出一下
data.to_csv('E:\Train_Test_data\second_hand_car\data_for_tree.csv', index=0)

# 我们可以再构造一份特征给 LR NN 之类的模型用
# 之所以分开构造是因为,不同模型对数据集的要求不同
# 我们看下数据分布:
data['power'].plot.hist()

# 我们刚刚已经对 train 进行异常值处理了,但是现在还有这么奇怪的分布是因为 test 中的 power 异常值,
# 所以我们其实刚刚 train 中的 power 异常值不删为好,可以用长尾分布截断来代替
train['power'].plot.hist()

# 取log,做归一化处理
from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
data['power'] = np.log(data['power']+1)
data['power'] = ((data['power'] - np.min(data['power'])) / (np.max(data['power']) - np.min(data['power'])))
data['power'].plot.hist()

# 公里数
data['kilometer'].plot.hist()

# 公里数,归一化
data['kilometer'] = ((data['kilometer'] - np.min(data['kilometer'])) / (np.max(data['kilometer']) - np.min(data['kilometer'])))
data['kilometer'].plot.hist()


# 除此之外 还有我们刚刚构造的统计量特征:
# 'brand_amount', 'brand_price_average', 'brand_price_max',
# 'brand_price_median', 'brand_price_min', 'brand_price_std',
# 'brand_price_sum'
# 这里不再一一举例分析了,直接做变换,

def max_min(x):
    return (x - np.min(x)) / (np.max(x) - np.min(x))
data['brand_amount'] = ((data['brand_amount'] - np.min(data['brand_amount'])) / 
                       (np.max(data['brand_amount']) - np.min(data['brand_amount'])))
data['brand_price_max'] = ((data['brand_price_max'] - np.min(data['brand_price_max'])) / 
                       (np.max(data['brand_price_max']) - np.min(data['brand_price_max'])))
data['brand_price_median'] = ((data['brand_price_median'] - np.min(data['brand_price_median'])) / 
                       (np.max(data['brand_price_median']) - np.min(data['brand_price_median'])))
data['brand_price_min'] = ((data['brand_price_min'] - np.min(data['brand_price_min'])) / 
                       (np.max(data['brand_price_min']) - np.min(data['brand_price_min'])))
data['brand_price_sum'] = ((data['brand_price_sum'] - np.min(data['brand_price_sum'])) / 
                       (np.max(data['brand_price_sum']) - np.min(data['brand_price_sum'])))
data['brand_price_std'] = ((data['brand_price_std'] - np.min(data['brand_price_std'])) / 
                       (np.max(data['brand_price_std']) - np.min(data['brand_price_std'])))
data['brand_price_average']=((data['brand_price_average'] - np.min(data['brand_price_average'])) / 
                       (np.max(data['brand_price_average']) - np.min(data['brand_price_average'])))

# 对类别特征进行 OneEncoder
data = pd.get_dummies(data , columns=['model' , 'brand' , 'bodyType' , 'fuelType',
                                     'gearbox' , 'notRepairedDamage' , 'power_bin'])
# 查看一下
print(data.shape)
data.columns

# 这份数据可以给 LR 用
data.to_csv('E:\Train_Test_data\second_hand_car\data_for_lr.csv', index=0)

# 特征筛选-根据文档总结知识点有3种
##过滤式
### 相关性分析
print(data['power'].corr(data['price'] , method='spearman'))
print(data['kilometer'].corr(data['price'] , method='spearman'))
print(data['brand_amount'].corr(data['price'] , method='spearman'))
print(data['brand_price_average'].corr(data['price'] , method='spearman'))
print(data['brand_price_max'].corr(data['price'] , method='spearman'))
print(data['brand_price_median'].corr(data['price'] , method='spearman'))

# 可视化
data_numeric = data[['power' , 'kilometer' , 'brand_amount' , 'brand_price_average' ,
                     'brand_price_max' , 'brand_price_median']]
correlation = data_numeric.corr()

f , ax = plt.subplots(figsize=(7,7))
plt.title('Correlation of Numeric Features with Price')
sns.heatmap(correlation , square = True , vmax=0.8)

/后边我的电脑一跑就死机,笑哭/

from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.linear_model import LinearRegression

sfs = SFS(LinearRegression(),
           k_features=10,
           forward=True,
           floating=False,
           scoring = 'r2',
           cv = 0)
x = data.drop(['price'], axis=1)
x = x.fillna(0)
y = data['price']
sfs.fit(x, y)
sfs.k_feature_names_ 

# 画出来,可以看到边际效益
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
import matplotlib.pyplot as plt
fig1 = plot_sfs(sfs.get_metric_dict(), kind='std_dev')
plt.grid()
plt.show()

从凯利蓝皮书(kbb)到craigslist, autotrader… 在符合以下正则表达式的网站上,从凯利蓝皮书(KBB)中获取二手车的价值... craigslist.org autotrader.com usedcars.com usedcars.com kbb.com cars.com edmunds.com carsforsale.com automall.com autosales.com auto com truecar.com carmax.com usedcars二手车cargurus.com carsales car-sale carsdirect.com car.com / cars / carwale.com包含的功能... 1.在弹出窗口中。 启用/禁用b。 在页面上自动检测汽车(这是实验功能,因此可能无法始终正确工作)c。 使用正则表达式d在更多匹配给定URL的网站上启用。 在未自动启用该页面的页面中显示“汽车价值”。2.在网页上。 默认情况下加载所有品牌。 根据用户选择加载模型,年份和修剪c。 尝试检测里程d。 显示汽车的KBB值... A.公允价值B.物超所值C.物超所值D.物超所值e。 链接到KBB页面(不再搜索汽车...直接链接到KBB页面)值:节省在搜索引擎和网站上查找汽车价值(KBB值)的时间。 减少汽车狩猎的痛苦! 发行历史记录v1.3(2018-09-01)-错误修复:已更新源api,现在正在加载价格信息v1.2(2016-17-03)-错误修复:manifest.json browser_action.default_icon.24中有值24x24.png而不是图像的实际路径(assets / img / 24x24.png)v1.1(2015-10-30)-使用新的KBB网址-删除名称中带有“,”的修饰符,因为它们不是有效的修饰符v1.0(2015)-原始应用 支持语言:English (United States)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值