word2vec

3 篇文章 0 订阅
2 篇文章 0 订阅

word2vec

看吴恩达老师的视频学习到的,记个笔记。

word2vec 的目标是根据两个词之间的关联训练 嵌入矩阵 E(Embedding Matrix),比如 orange-juice,这是一对,他们的关联-target就为1,orange-king的target-0。

这样一对词,orange-juice,其中orange叫做 上下文 (context),它们之间的关联叫做target,非1则0.

word2vec
如上图,训练嵌入矩阵的过程是这样的,输入是一个单词-context的one-hot,如字典是10000个单词,输入就是10000维的one-hot向量。E*context后,得到一个 词向量- e 6257 e_{6257} e6257, e 6257 e_{6257} e6257经过一个10000个输出的 softmax 分类器,得到输出,之后做逻辑回归对嵌入矩阵进行训练,损失函数的 标签 就是context对字典中每个单词的target。

诸如skip-gram、负采样就是对这个模型某些地方进行更改,但本质是不变的:

  • context-target 模型
  • 目标是训练嵌入矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值