探索文本数据

#探索文本数据
from sklearn.datasets import fetch_20newsgroups
data=fetch_20newsgroups()#类字典的方式
#不同类型的新闻,标签的分类
data.target_names

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import numpy as np
import pandas as pd
categories=["sci.space"
           ,"rec.sport.hockey"
           ,"talk.politics.guns"
           ,"talk.politics.mideast"]
train=fetch_20newsgroups(subset="train",categories=categories)
test=fetch_20newsgroups(subset="test",categories=categories)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值