利用spss进行多元逐步回归

1.首先用代码将变量归一化

我这第5列及后是我要归一化的数据,将归一化后的数据保存为nor_result.csv文件

import pandas as pd
from sklearn.preprocessing import MinMaxScaler

df = pd.read_csv('E:\\Sentinel12\\yangben\\result.csv')
cols_to_normalize = df.columns[4:]

scaler_slope = MinMaxScaler(feature_range=(0, 1))
scaler_aspect = MinMaxScaler(feature_range=(0, 1))

df[cols_to_normalize[0]] = scaler_slope.fit_transform(df[[cols_to_normalize[0]]])
df[cols_to_normalize[1]] = scaler_aspect.fit_transform(df[[cols_to_normalize[1]]])

for col in cols_to_normalize[2:]:
    scaler = MinMaxScaler(feature_range=(0, 1))
    df[col] = scaler.fit_transform(df[[col]])

for col in cols_to_normalize:
    df['N_' + col] = df[col]
    df = df.drop(col, axis=1)

df.to_csv('E:\\Sentinel12\\yangben\\nor_result.csv', index=False)

2.打开SPSS软件

我使用的是spss 26版本的
打开数据
开始建模:
点击分析-回归-线性
在这里插入图片描述
选择因变量为生物量
在这里插入图片描述
其他变量为自变量
统计里面把R方勾上
在这里插入图片描述
图的话我们选择
在这里插入图片描述

在这里插入图片描述
得到输出结果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python与遥感

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值