如何跨渠道分析销售数据 - 7年制造业销售经验小结(1)
【前言】
在我过去7年销售工作生涯中,从第一年成为公司销冠后,我当时的确自满的一段时间,认为自己很了不起。但是第一年的销售业绩并没有拿到提成,最终大合同3680万也是公司另外一名销售经理去签订的。 后来我就离开了这个公司,开始自己独自尝试开发客户,自己单独去谈订单。虽然已经离开那个公司已经5年了,但是那个创始人是销售出身,他的一些销售教导以及几年我自己个人通过读书和工作实践中的总结,我越来越发现如何分析销售数据,并利用这些数据最大限度地实现增长对于任何一个公司的发展,都显得十分重要。这几年我接触到中小企业(SME)中,大多数老板的销售体系是有问题的,更谈不上从数据上做销售预测和决策了。所以,今天我尝试来整理一下我的读书和工作心得。
实现销售目标和生产力目标会让销售代表陷入困境。以软件销售为例,为了让工作更轻松,你可能承担的前几项任务之一就是部署技术。然而,将工具添加到组合中可能不是解决方案。从公司第一次部署使用CRM后,随着越来越多的销售工具发挥作用,您是不是越来越依赖数字系统和越来越多的数据?
您需要从大量数据中提取可操作的见解和预测信号。这推动了实时分析的更多价值。这是通过信号来完成的,这些信号表明了推进交易的下一个最佳行动。在不了解如何分析销售数据的情况下找到这些见解似乎很吓人。
请和我一起来深入探讨如何分析销售数据,并利用这些数据最大限度地实现增长。
目录
一、什么是销售数据?
二、什么是销售数据分析?
三、为什么分析销售数据很重要?
四、如何分析销售数据?
五、如何分析销售数据:检查表
六、使用人工智能进行销售分析
一、什么是销售数据?
在我们继续分析销售数据之前,让我们对销售数据的定义有一个清晰的了解。
销售数据是通过跟踪您的销售活动收集的信息,从客户接触点到业务。
不同类型的销售数据包括:
1. 地缘数据(Demographic Data ):如客户姓名,邮件,地址,联系人等
2. 公司层面信息数据(Firmographic Data): 如潜在客户,客户的客户的名字,工厂地址,员工人数,社保缴费人数,税收等
3. 技术层面信息数据(technolographic Data):如客户目前使用的什么设备,使用哪些软件,主要的品牌,竞争对手的相关信息等
4. 时序信息数据(Chronographic): 客户的招标公告,人才招聘信息,市场价格,竞争对手的活动,客户的询价行为等等
二、什么是销售数据分析?
销售分析评估特定时期的销售数据和收入。它利用技术和流程来分析销售数据并提取见解。
您可以通过分析销售数据在短期和长期内提高销售代表的绩效。此外,您还可以识别、建模和预测销售趋势或结果。
销售分析分为四种类型
1.描述性 Descriptive
描述性的销售分析会向您展示过去发生的事情或现在正在发生的事情。它跟踪历史数据并将其与当前性能进行比较。很多销售人员,因为时间投入有限,大部分销售人员因为时间投入不够或者方法有限,对客户的需求描述不够充分,很难引起公司高层的重视,往往在初期丧失销售的先机。
2.诊断 Diagnostic
诊断分析旨在找出销售业绩数据背后的“原因”。它还试图了解是什么行为导致了特定情况的发生。
3.规定性 Prescriptive
规定性销售分析决定了如何解决特定问题以提高绩效。它首先评估数据并规定(或建议)下一个最佳行动。
4.预测性 Predictive
顾名思义,预测性销售分析从过去和当前的表现中学习以衡量模式。然后,它对未来会发生什么做出有根据的预测。这使您能够深入了解构建预测和设定最佳销售目标。这些预测结果对未来的生产交付、采购、人力资源都是有重大的关系的。尤其是大型制造业,对未来人力资源和物料的需求,产线安装和设备调试,都需要提前知道相对正确的数据。
三、为什么分析销售数据很重要?
我从第一家公司离开后,陆续换了几个公司,我发现很多公司是不重视销售收据的,或者说是方法不当。所以,我到现在还是挺感谢当年那个德国人的销售培训的,非常有用。
97%的卖家表示销售情报工具“非常重要”或“重要”。但为什么分析销售业绩对你来说如此重要?
我总结发现了8个原因
1.优化未来性能
通过分析销售数据,您可以深入了解如何制定更好的收入策略。使用可操作的见解,您可以提高未来的绩效。</