ChatGLM-6B部署笔记

前言

本笔记基于ChatGLM-6B开源网站 https://github.com/THUDM/ChatGLM-6B 完成ChatGLM的本地部署。首先电脑已经安装python3.10,anaconda,pycharm2022.3,如若使用本地网络会出现安装依赖失败、下载代码文件缓慢等问题,解决方法有两个,一是可以使用清华源安装依赖,下载模型;二是全程使用科学上网的方法,本次部署使用的方法是后者。
电脑基本信息:
电脑系统 windows 10
CPU intel W-2235
显卡 A5000 24GB
运行 内存128GB

一、环境安装

下载ChatGLM-6B 相关文件

1.先进入 https://github.com/THUDM/ChatGLM-6B下载源文件
在这里插入图片描述
2.然后进入https://huggingface.co/THUDM/chatglm-6b下载模型文件,并把文件保存在E:\Rui-Wu\ChatGLM-6B-main\chatglm-6b中。
在这里插入图片描述

创建环境

1.创建名称为ChatGLM的环境,并且python的版本是3.10以上。

conda create --name ChatGLM python=3.10 

2.查看环境是否创建成功。

conda info --envs

会出现下面的情况,表示已经创建成功
在这里插入图片描述

所有的操作最好在项目的根目录下进行,即所下载ChatGLM的目录下进行。比如我所在的目录是E:\Rui-Wu\ChatGLM-6B-main。通过以下代码转换目录:
1.进入E盘

e:

2.进入目录

cd E:\Rui-Wu\ChatGLM-6B-main

如下图所示:
在这里插入图片描述

激活环境

环境创建完成之后,通过以下代码激活环境

activate ChatGLM

激活环境过后如下图所示
在这里插入图片描述

检查CUDA及显卡驱动

此步骤是为了后面能够成功的安装pytorch,在安装pytorch之前都要进行显卡驱动的检查。具体版本要求可通过csdn或者nVidia控制面板查阅。可通过如下代码检查驱动:

nvidia-smi

如下图所示可以查看驱动版本以及CUDA版本,出现下面的表格,则说明电脑以及安装显卡驱动以及CUDA,然后根据CUDA版本安装合适的pytorch版本。
在这里插入图片描述

安装pytorch

登录pytorch官网 ,如下图所示,选择合适的版本,CUDA版本要求不低于本电脑的版本即可,本次选择安装的是CUDA11.8的pytorch版本。然后复制最底下的代码,输入到anaconda中。
在这里插入图片描述

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

然后通过以下代码检查是否安装成功

pip list

如果出现下面的情况,则说明安装成功。后缀cu118表示cuda11.8版本的pytorch,同时也说明安装的是GPU版本的pytorch,如果安装成了CPU版本的pytorch,则后缀没有+cu118
在这里插入图片描述

安装依赖

通过以下代码安装ChatGLM-6B的依赖,这也是为什么要提前把目录切换到E:\Rui-Wu\ChatGLM-6B-main的原因,要不然找不到requirements.txt的文件。而且,依赖文件中的torch模块是only cpu的,因为在此之前已经安装过pytorch,所以要提前把依赖中的torch删除,如下图所示。
在这里插入图片描述

1.安装依赖

pip install -r requirements.txt

2.然后通过以下代码检查是否安装成功

pip list

二、网页版启动

通过anaconda启动

依赖中已经安装了gradio,可通过以下代码启动网页版demo。也可以通过pycharm启动,把pycharm环境改到ChatGLM以后,直接运行web_demo.py文件。(每次运行都会重新下载模型,因此启动比较慢)

python web_demo.py

如下图所示
在这里插入图片描述

修改模型

通过以上方法运行模型,每次都要重新下载模型文件,因此需要修改代码,以达到可以直接从本地加载模型的目的。
进入刚开始下载开源文件的文件夹打开web_demo.py文件,修改模型。如下图所示:
在这里插入图片描述
例如我的模型下载地址为E:\Rui-Wu\ChatGLM-6B-main\chatglm-6b,因此模型修改路径如下:
在这里插入图片描述
还可以按照电脑配置修改显存,如下图所示:
在这里插入图片描述
例如,若显存为6G
在这里插入图片描述
通过pycharm启动。
在这里插入图片描述

参考

【ChatGLM】在电脑部署属于自己的人工智能/ChatGPT平替/可离线/可发布
开发者git hub

### 部署 ChatGLM-6B 模型 #### 准备工作环境 为了成功部署 ChatGLM-6B,在本地环境中需先准备必要的软件包和依赖项。确保已安装 Python 3.x 版本以及 pip 工具。对于 GPU 加速支持,需要安装与硬件兼容版本的 CUDA 和 cuDNN 库[^3]。 #### 获取模型文件 通过 Git 命令克隆仓库至指定路径来获取 ChatGLM-6B 的最新代码库。命令如下所示: ```bash git clone https://huggingface.co/THUDM/chatglm-6b /mnt/workspace/chatglm-6b ``` 此操作会将整个项目复制到 `/mnt/workspace/chatglm-6b` 文件夹内;可根据个人需求更改目标位置[^2]。 #### 安装依赖库 进入刚创建好的 chatglm-6b 目录并执行以下指令完成所需Python库的安装: ```bash cd /mnt/workspace/chatglm-6b pip install -r requirements.txt ``` 这一步骤将会读取 `requirements.txt` 文件中的列表自动下载并配置所有必需组件。 #### 运行 Web Demo 启动基于 Streamlit 构建的交互界面之前,请确认已经正确设置了虚拟环境并且激活它。接着可以通过下面这条简单的命令开启 web demo: ```bash python web_demo2.py ``` 如果遇到 "streamlit is not a built-in function" 类似报错,则说明缺少 streamlit 包,此时应补充安装该模块后再试一次[^4]。 #### 关键函数解析 在整个过程中涉及多个重要功能实现部分,特别是用于处理消息流及响应生成的相关方法。例如 `process_chatglm_messages()` 负责接收用户输入并将之转化为适合传递给核心算法的形式;而 `process_response()` 则专注于整理来自内部计算的结果以便于展示给最终使用者[^5]。 #### 注意事项 - **硬件要求**:建议至少配备 NVIDIA GeForce RTX 系列以上的独立图形处理器以获得更好的性能表现。 - **内存消耗**:考虑到大尺寸预训练模型的特点,推荐拥有不少于16GB RAM的工作站来进行稳定测试。 - **网络连接**:虽然大部分情况下离线模式也能正常运作,但在初次加载或更新资源时仍可能需要用到互联网访问权限。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值