大模型LLama3!!!Ollama下载、部署和应用(保姆级详细教程)

首先呢,大家在网站先下载ollama软件

这就和anaconda和python是一样的

废话不多说

直接上链接:Download Ollama on Windows

三个系统都支持

注意:

这里的Models,就是在上面,大家点开之后,里面有很多模型,直接通过指令就可以下载呢:

下面就是Ollama的安装啦:

在这里安装还是很快的,大家耐心等一下,大概两三分钟就好啦~~

下载完之后

就和python anaconda一样

在cmd中输入:ollama list

然后大家直接在这里输入指令下载llama3就可以啦:

我在这里下载的是8b的,下载速度还是比较快的,几分钟就好啦

下载完之后,在运行这个指令,就直接打开啦!!!

### Linux服务器上部署运行LLaMA3大模型 #### 下载并配置Git LFS与模型库 为了在Linux环境中成功部署Meta-Llama 3 AI大模型,需先安装Git Large File Storage (LFS),这有助于管理大型文件版本控制。具体操作如下: ```bash git lfs install git lfs clone https://www.modelscope.cn/baicai003/Llama3-Chinese_v2.git ``` 上述命令用于初始化Git LFS,并克隆指定路径下的Llama3中文版v2模型仓库[^1]。 #### 修改Python脚本以适应部署需求 针对已下载的模型,在`/root/data/workspace/llama3-Chinese-chat/deploy/python/chat_demo.py` 文件中进行必要的调整,确保其能够适配当前环境设置以及满足特定功能需求[^2]。 #### 获取Gradio演示界面并与项目集成 为了让用户更直观地测试交互效果,还需获取由第三方提供的Gradio框架构建的应用实例,并将其放置于目标目录下: ```bash wget https://github.com/ymcui/Chinese-LLaMA-Alpaca/blob/main/scripts/inference/gradio_demo.py mv gradio_demo.py ~/Workspace/Llama2/ ``` 完成此步之后,通过执行以下指令来查看GPU资源分配情况及启动应用服务: ```bash nvidia-smi python gradio_demo.py \ --base_model=Llama2-chat-13B-Chinese-50W \ --tokenizer_path=Llama2-chat-13B-Chinese-50W \ --load_in_8bit \ --gpus=0 ``` 这里需要注意的是参数的选择应依据实际硬件条件个人偏好而定[^3]。 #### 安装依赖项优化方案 考虑到国内网络状况可能导致官方PyPI源访问缓慢的问题,建议采用清华大学开源软件镜像站作为替代来源加快包安装过程: ```bash pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 该方法不仅提高了效率还减少了因连接不稳定带来的失败风险[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

今天不想Debug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值