embedding=nn.Embedding(13,3)的理解

code1

embedding=nn.Embedding(13,3)
input1=torch.LongTensor([[1,2,4,5],[4,3,2,9]])
print(embedding(input1))   

Q1:Embedding(13,3)中的3是不是将input1中的每个元素映射成了3个??

在 PyTorch 中,nn.Embedding 是一个用于构建词嵌入(word embedding)层的类。词嵌入层的作用是将输入的词索引映射为密集的词向量(或称嵌入向量),每个词索引对应一个固定长度的向量表示。

示例:

import torch
import torch.nn as nn
 #创建一个 Embedding 层,输入词汇大小为 13,每个词向量维度为 3
embedding = nn.Embedding(13, 3)
 #创建一个二维张量,每个元素是一个词的索引
input1 = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])
#将 input1 中的每个词索引映射为对应的词向量
output = embedding(input1)

print("Input Tensor:")
print(input1)

print("\nEmbedding Output:")
print(output)
print("Shape:", output.shape)

output:
tensor([[[ 1.3061, 1.8901, -0.1068],
[-0.3076, 0.3284, -0.4797],
[ 0.8163, -0.5099, 1.2464],
[-0.5400, -0.9338, -0.9752]],

    [[ 0.8163, -0.5099,  1.2464],
     [ 2.7638,  0.6694, -1.3950],
     [-0.3076,  0.3284, -0.4797],
     [ 0.1519, -1.8212,  0.1840]]], grad_fn=<EmbeddingBackward0>)

解释:
nn.Embedding(13, 3) 表示创建了一个词嵌入层,词汇表的大小为 13(即有13个不同的词),每个词向量的维度是 3。因此,词汇表中的每个词都将被映射为一个长度为 3 的向量。

torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]]) 创建了一个二维张量 input1,其中每个元素是一个词的索引。这个张量有两行四列,表示两个样本,每个样本有四个词的索引。

embedding(input1) 将 input1 中的每个词索引转换为对应的词向量。输出的 output 是一个三维张量,其形状为 (2, 4, 3)。其中:

第一个维度 2 表示两个样本(batch size)。
第二个维度 4 表示每个样本中有四个词。
第三个维度 3 表示每个词的词向量维度。

每个词索引在经过词嵌入层后,确实被映射成了长度为 3 的词向量。这些词向量在深度学习模型中常用于表示输入数据,帮助模型学习语义信息和特征。

因此,Embedding(13, 3) 中的 3 确实是将 input1 中的每个元素(词索引)映射为一个长度为 3 的词向量。
Q2:这几行code每次运行的结果都不一样,为什么?
在这里插入图片描述

code2

	pe = pe.unsqueeze(0)
	self.register_buffer('pe', pe)

Q1:buffer是什么??
pe 是一个经过 .unsqueeze(0) 处理后的张量,形状为 [1, max_len, d_model]。
self.register_buffer(‘pe’, pe) 将 pe 注册为模型的 buffer,键名为 ‘pe’。
注册为 buffer 的张量会被 PyTorch 框架自动管理,它会与模型的状态一起保存和加载。在模型保存到文件或者加载时,buffer 的值也会被保存和加载,这样可以确保模型在不同的状态下仍能保持一致性,尤其适用于模型中的常量或者预定义的张量

示例应用
例如,在 Transformer 模型中,位置编码矩阵就可以注册为 buffer,因为它是固定不变的,不需要在训练过程中更新。这样可以避免将其当做模型参数处理,从而简化代码并提高效率。

import torch
import torch.nn as nn
class MyModel(nn.Module):
	    def __init__(self, max_len, d_model):
	        super(MyModel, self).__init__()
	        # 初始化位置编码矩阵 pe
	        pe = torch.zeros(max_len, d_model)
	        pe = pe.unsqueeze(0)  # 在最外层增加维度 [1, max_len, d_model]
	        
	        # 将 pe 注册为模型的 buffer
	        self.register_buffer('pe', pe)
	    
	    def forward(self, x):
	        # 在 forward 方法中可以使用 self.pe 来访问位置编码矩阵
	        pass
  • 12
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值