共情对话综述泛读
Empathetic Conversational Systems: A Review of Current Advances, Gaps, and Opportunities知云翻译记录
移情的概念在人-主体系统中至关重要,因为它有助于相互理解、解决问题和维持关系。尽管越来越多地采用对话系统是近十年来最重要的事件之一,但情感方面需要相当大的改进,特别是在有效地表达同理心方面。本文对这一快速发展的领域进行了批判性的回顾,考察了四个维度的当前进展:(i)概念共情模型和框架,(ii)采用的共情相关概念,(iii)开发的数据集和算法技术,以及(iv)评估策略。综述结果表明,大多数研究集中在使用共情对话数据集,基于文本的模态主导了该领域的研究。此外,研究主要集中于从用户和会话系统的消息中提取特征,很少强调用户建模和分析。为了在多样化的现实世界领域设置中实现,我们建议未来的研究解决在实体级别检测和验证情绪、处理多模式输入、显示更微妙的同理心行为和包含额外的对话系统功能方面的差距。
情感计算,共情会话代理,共情聊天机器人,共情对话系统,共情,共情人工智能
对话式人工智能(CAI)已经成为个性化数字助理、虚拟助理、合作机器人和聊天机器人的研究和商业应用的一个有利可图的领域。CAI系统已经扩展到从日常生活、商业、业务支持、教育到医疗保健[2]、[3]等多个领域。研究涵盖多个主题,包括对话聊天机器人和对话系统[4],[5],对话推荐系统[6],对话搜索系统[7]和对话提问和回答(Q&A)系统[8]。尽管每个主题都有特定的重点,全面的CAI实现将受益于整合这些主题的研究思想和产出。由于人类是CAI研究循环的重要组成部分,人类与聊天机器人交互[3]、[9]和信息寻求策略[10]的行为研究也同样进行了。CAI研究的一个关键目标是使系统人性化,以促进与人类更好、更有意义的接触[11]。研究人员已经开发了情绪感知系统,从人类的表情中检测情绪和情绪,并产生情绪反应[12]。该实现依靠情感分析[13]和情感识别[14]算法来识别用户消息的主流情绪和情绪。
虽然识别情绪和情绪是通向有效对话的建设性步骤,但事实证明,在CAI研究中,以同理心的反应吸引人类更成功[13],[14]。科学界对共情有很多定义文学。基于对约43个定义的综合分析,Cuff等人[15]将共情概括为“一种情绪反应(情感),依赖于特质能力和状态影响之间的相互作用。”共情过程是自动引发的,但也由自上而下的控制过程塑造。产生的情绪类似于一个人对刺激情绪的感知(直接体验或想象)和理解(认知共情),认识到情绪的来源不是自己的。”共情被认为是一种必要的行为,已经进行了研究,以提高人类在不同环境下的共情[16],[17]。共情有不同类型,即情感性共情、认知共情和同情共情。情感性同理心和认知同理心分别是关于镜像和理解他人的感受,而同情心同理心则是关于对他人的感受提供符合社会要求的回应。同理心的计算模型有助于更好地理解人际关系[19]。共情模型的计算和理论研究在三个主要组成部分——情绪沟通能力、情绪调节和认知机制[20]上进行了变化。同理心行为的不同取决于与这三个组成部分相关的机制。被分类的行为包括镜像、情感匹配、共情关心、安慰、利他帮助和换位思考[20]。一个理想的共情CAI系统应该根据对话场景表现出这些行为。近年来,深度学习和自然语言处理(NLP)的发展加速了计算机辅助教学的研究,在多模态、多任务和长期目标处理系统方面出现了新趋势[21]。相应地,人们对同理心反应的兴趣也在增加
生成方法,以及相应的响应生成模型[15]。CAI系统可以在基于文本的对话中表现出对人类情感的同理心。随后,移情反应生成CAI系统的研究拓展了新的数据集[14],[22]-[24]和增强的反应生成模型[25],[26]。对话系统可以分为三种类型(i)任务导向型,(ii)对话式和(iii)交互式问题和回答[27]。基于本文所涵盖的现有共情反应生成CAI系统的研究,本研究主题可以被描述为会话对话系统,因为对话结构是非结构化的,回合数是多个的,对话的长度很长,也因为CAI系统没有具体的任务被完成。在本文中,我们将这一共情CAI系统的研究主题称为共情会话系统(ECS),以区别于先前的研究[28]中使用的术语具体化会话代理(ECA)。1. 以前的ECS研究在概念化框架、准备数据集、训练模型和设计嵌入移情在CAI系统中的算法方面显示出了很大的希望。在Paiva等人发表于2017年[29]的该领域最早的调查之一中,研究了虚拟代理和机器人的计算共情模拟和触发机制。在本调查的出版期间,系统主要采用基于规则和基于启发式的方法,而不是当前基于深度学习的自然语言生成(NLG)方法。在Spring等人[30]中,对ECS研究进行了回顾,该框架包括四个阶段,即情绪表达、情绪检测分类、反应生成和反应表达。Ma等人[31]从功能的角度考察了ECS研究,并在共情对话系统的范围内考察了三种类型的对话系统。
这些对话系统类型是情感对话系统、个性化对话系统和基于知识的对话系统。Wardhana等[32]对共情对话的特征、对话系统模型和统计推断技术进行了综述。尽管有这些有价值的综述,但明显缺乏深入研究共情融入ECS模型的系统见解。特别是,现有的综述还没有包含概念性共情模型和已在经验性ECS研究中操作化的共情相关概念的信息。此外,研究中使用的重要数据集也没有被涵盖。共情是一个多维度的概念,在人与智能体的互动中有多个外围子概念在起作用。
从这一参考框架中,有必要对ECS研究进行批判性审查。
- 我们的目标是批判性地回顾现有的ECS研究及其用于理解的概念框架
- 不同的研究试图在系统中唤起同理心。这将有助于描述研究主题的进展,以便发现差距和机会领域。下面是一些问