李宏毅机器学习——梯度下降Gradient Descent

一、自适应学习率

在梯度下降的过程中,一般情况下,希望开始开始的时候学习率(学习的速度)快一些,后面慢慢接近局部最低的时候,学习率逐渐减小,移动的幅度更小且精确。

(一)普通的梯度下降

学习率的调整受到t和g的影响(g是微分),步长受到初始学习率、当前微分、当前时刻点的影响
在这里插入图片描述

(二)Adagrad

学习率的调整受到微分占比的影响(相当于把t和g整合成了占比这一个统计量),步长受到初始学习率、当前微分占比的影响。
在这里插入图片描述

二、Adagrad的使用场景

适用于单参数模型,这是其最大的缺点。原因有二:

  • 不同参数需要不同的w
  • 多参场景下,步长同时受到一阶导和二阶导的影响,计算复杂

【解决措施】特征缩放,即标准化
x的量纲不同,w对y的影响不同,w对损失函数的影响也不同。所以应该对x进行标准化,从而更新参数更容易且有效率。

三、梯度下降的限制

  • 容易陷入局部极值
  • 还有可能卡在不是极值,但微分值是0的地方
  • 还有可能实际中只是当微分值小于某一个数值就停下来了,但这里只是比较平缓,并不是极值点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值