【FCOS】FCOS理论知识讲解

1 FCOS是什么

FCOS发表于ICCV 2019,是常用的无需锚框(先验框、anchor)的目标检测算法之一。

1.1 核心思想

核心思想:将铺设锚框变为铺设锚点,进行物体检测。

所谓铺设锚框,又称为Anchor-Based,是指在输出特征图上的每个像素的位置,放置几个预先定义的anchor框,在网络训练过程中,对这些anchor框进行分类与回归。
通过GT框和这些anchor框计算IoU,依据设定的阈值条件来定义正负样本,典型的有YOLOv3。

所谓铺设锚点,又称为Anchor-free,如下图所示,将原有的 对锚框进行分类与回归,变为对锚点进行分类与回归,其中回归是预测锚点到检测(GT)框上下左右四条边界的距离,典型的有FCOS。
在这里插入图片描述

1.2 Anchor-Based缺点

  • Anchor-Based方式,检测性能对于anchor的大小、数量、长宽比 都非常敏感,通过改变这些超参数Retinanet在COCO benchmark上面提升了4%的MAP。
  • 固定size和aspect ratio的anchor损害了检测器的普适性,导致对于不同任务,anchor可能需要重新设置大小和长宽比。
  • 为了达到更高的召回率(查全率),需要生成大量的anchor(FPN约18万个),但是大部分的anchor在训练时标记为负样本(negative),造成了样本不均衡问题。
  • 在训练中,需要计算所有anchor与真实框的IoU,这样会消耗大量内存和计算资源。
    在这里插入图片描述

1.3 FCOS优点

  • 检测问题被统一到 FCN-solvable 的问题,可以简单地重用其他任务的idea,如语义分割。
  • anchor-free方式,不需要像anchor-based那样大量调整参数,使训练更为简单。
  • 由于不需要计算IoU,节省了大量算力和内存。
  • 提出了一些关于交叠区域的解决方法和思考。
  • 模型部署会受到两种限制,一种是计算量的限制,一种是I/O 带宽的限制。anchor-free方式相比于anchor-based方式,对部署更友好一些。

2 FCOS 网络总解

2.1 初始版本网络结构

早期的FCOS网络结构如下图所示:
在这里插入图片描述
FCOS采用FPN结构,backbone的C3、C4、C5特征层作为FPN的输入,FPN生成P3,P4,P5,P6,P7特征图,送入后续的检测头Head。

每个Head包含3个分支:

  • classification分支:预测类别,图中的C表示类别数,相当于C个二分类
  • regression分支:回归位置,图中的4表示:l,t,r,b,预测锚点到检测框上下左右四条边界的距离
  • center-ness:中心度,一个锚点对应一个中心度,用于锚点相对于检测框中心性的判断

在检测子网络Head中,分类分支和回归分支都先经过了4个卷积层进行了特征强化。

早期版本,在分类分支中,既包含 正、负样本锚点的 类别预测分支,又包含正、负样本锚点中心性判断的center-ness分支,用来强化检测结果;

回归分支 用来回归正样本锚点到检测框上、下、左、右四个边界的距离 。

2.2 分支改进后网络结构

center-ness分支,早期版本是和classification分支一起,如上图所示,后来大家发现center-ness分支和regression分支一起效果更好,如下图所示。
在这里插入图片描述
感谢 太阳花的小绿豆 画的更详细的网络结构图:
在这里插入图片描述

2.3 损失函数

以最新版本损失函数为例,Head总共有三个输出分支:Classification、Regression和Center-ness。故损失由分类损失 L c l s L_{cls} Lcls、定位损失 L r e s L_{res} Lres以及center-ness损失 L c t r n e s s L_{ctrness} Lctrness三部分共同组成:
在这里插入图片描述
分类损失 L c l s L_{cls} Lcls采用 BCELoss + Focal Loss ,计算损失时所有样本都会参与计算(正样本和负样本)。
定位损失 L r e s L_{res} Lres采用GIoU loss(早期采用 IoU loss),计算损失时只有正样本参与计算。
center-ness损失 L c t r n e s s L_{ctrness} Lctrness采用 BCELoss,计算损失时只有正样本参与计算。
在这里插入图片描述
更详细的centerness分支可在第7节中看到。

3 正样本、负样本、模糊样本的定义

使用候选框进行目标检测时,也就是anchor_based方式,候选框中是否包含目标就是判断正负样本的的准则。
有目标的就是正样本,没有目标的就是负样本。

对于使用anchor_free方式的FCOS,它是把特征图上的每个点作为一个样本,如果这个点落在任何一个GT框内,它就是正样本,否则它就是负样本。

在正样本中,存在一个点落在多个GT框中的情况,如下图所示,这个点称之为模糊样本(ambiguous)。
在这里插入图片描述
此时,有两个问题:

  • 特征图上的点怎么知道它是在原图上的GT框内还是外呢?
    回答:见第4节分析。
  • 一个点恰好只落在一个框内,此时它就去负责预测这个GT框,那模糊样本预测谁呢?怎么处理呢?
    回答:一个点落在多个GT框中,取最小的那个GT框作为回归目标,此外,利用FPN进行多尺度预测会极大程度上减少这种情况的发生。具体细节在第6节介绍。

下面分别回答。

4 特征图上的点映射回原图

对于特征图 F i ∈ R H × W × C F_i \in R^{H \times W \times C} FiRH×W×C,其相对于输入图片的stride定义为 s s s (举个例子,特征图宽高是40x40,输入图片宽高是320x320,那么 s 等于8)。

另外记GT框的信息为 B i B_i Bi B i = { x 0 ( i ) , y 0 ( i ) , x 1 ( i ) , y 1 ( i ) , c ( i ) } B_i=\{ x_0^{(i)},y_0^{(i)},x_1^{(i)},y_1^{(i)},c^{(i)} \} Bi={x0(i),y0(i),x1(i),y1(i),c(i)},其中 ( x 0 ( i ) , y 0 ( i ) ) (x_0^{(i)},y_0^{(i)}) (x0(i),y0(i)) ( x 1 ( i ) , y 1 ( i ) ) (x_1^{(i)},y_1^{(i)}) (x1(i),y1(i)) 分别表示GT框的左上角和右下角顶点坐标, c ( i ) c^{(i)} c(i) 是GT框的类别。

对于特征图 F i F_i Fi上的每个点坐标 ( x , y ) (x,y) (x,y) ,可以用如下公式把它映射到原输入图像上:
( ⌊ s 2 ⌋ + x s , ⌊ s 2 ⌋ + y s ) (\lfloor \frac{s}{2} \rfloor + xs, \lfloor \frac{s}{2} \rfloor + ys) (2s+xs,2s+ys)

5 锚点回归目标值

注意: 锚点落在任何GT框的内部,就认为这个锚点是正样本,并负责预测这个GT框,在映射回原图后的该点直接回归目标框,而不是把这个点看成目标框的中心点进行回归。

锚点的回归目标值计算公式如下图所示,其中 ( l ∗ , t ∗ , r ∗ , b ∗ ) (l^*,t^*,r^*,b^*) (l,t,r,b)锚点距离物体真实标注框左、上、右、下边界的距离。
在regression分支中,每个锚点预测一个4维向量,即 ( l ∗ , t ∗ , r ∗ , b ∗ ) (l^*,t^*,r^*,b^*) (l,t,r,b)

网络能把每个锚点距离真实标准框的距离预测的越准,说明网络检测效果越好。
在这里插入图片描述
此处的 ( x , y ) (x,y) (x,y)应该是特征图上的锚点映射到原图上的位置。
这里用stride (上图中的s) 进行缩放,使得不同尺度的物体,回归目标值都在一定范围内,避免训练过程中可能出现的梯度爆炸。
由于4个回归值要大于0,最后的输出采用ReLU来保证回归值的范围为(0, +∞)。

6 模糊样本的处理

锚点落在多个GT框的区域内,则称其为模糊样本(ambiguous)。

以一个像素落在两个GT框的情况为例,选择的原则是:选择面积最小的一个GT框作为它训练用的回归目标。
为什么选面积最小的GT框作为它的回归目标?我的理解是:回归小框的像素点本来就少,大的GT框肯定有更多的点去回归的!

思考: 有点草率了,应该先有点什么限制或减少这种情况出现!
回答: 模糊样本的出现,大部分是由于物体重叠造成的,但是重叠的物体多数大小是不同的,所以 FPN特征金字塔 闪亮登场。
在这里插入图片描述
启发于anchor-based方法,采用FPN时会将不同大小的anchor放置在不同大小的特征图上,特征图越小,感受野相应更大,用来检测更大的物体。同样地,这种设计理念可以用在FCOS模型上。

FCOS采用5个大小不同的特征图 P 3 , P 4 , P 5 , P 6 , P 7 P_3, P_4, P_5, P_6, P_7 P3,P4,P5,P6,P7,其对应的stride分别是8,16,32,64,128。辅助理解: 2 i 2^i 2i

为了减少尺度差异大的物体重叠,对于anchor-based方法,由于是根据anchor和GT框的IoU来进行匹配,所以很自然地将大小不同的GT框分配到不同的特征图。

而FCOS直接通过限制不同特征图上目标回归值来达到这一目的。
具体来说,每个特征图 P i P_i Pi 会设定一个回归值的下限值 m i − 1 m_{i-1} mi1 和上限值 m i m_{i} mi ,作为其回归距离限制。

对于特征图 F i F_i Fi上的每个点坐标 ( x , y ) (x,y) (x,y) ,满足 m a x ( l ∗ , t ∗ , r ∗ , b ∗ ) > m i max(l^*,t^*,r^*,b^*)>m_i max(l,t,r,b)>mi m i n ( l ∗ , t ∗ , r ∗ , b ∗ ) < m i − 1 min(l^*,t^*,r^*,b^*)<m_{i-1} min(l,t,r,b)<mi1,那么在这个特征层就将其视为负样本,不再进行回归。论文中 m 2 , m 3 , m 4 , m 5 , m 6 , m 7 m_2, m_3, m_4, m_5, m_6, m_7 m2,m3,m4,m5,m6,m7 分别设定为0,64,128,256,512,+∞。
也就是特征图 P 3 P_3 P3 覆盖的是[0,64]之间的目标回归值,而 P 7 P_7 P7 则是负责512以上的目标回归值。

7 Center-ness分支

作者在使用了多尺度检测后发现仍然和anchor-based的检测器有很大差距,发现FCOS存在大量的低质量的检测框。这是由于把中心点的区域扩大到整个物体的边框,经过模型优化后可能有很多中心离GT box中心很远的预测框。

于是,FCOS在regression分支的末尾添加了一个额外的center-ness分支(早期放在classification分支,但是放在regression分支效果更好)来抑制一些检测框:由偏离目标中心的锚点 所预测的低质量检测框。

中心性预测分支center-ness,动机在于如果一个锚点距离物体标注框中心点越近,锚点的回归目标值(锚点距离标注框左、上、右、下四个边界的距离)就越一致,回归难度较低,回归效果会越好。

center-ness分支只预测一个值:当前位置与要预测的物体中心点之间的归一化距离,值在[0, 1]之间,距离物体中心点越近,得分越高。下图给出了可视化效果,其中红色和蓝色值分别1和0,其它颜色介于两者之间,从物体中心向外,center-ness从1递减为0。
在这里插入图片描述
给定回归的 t a r g e t = ( l ∗ , t ∗ , r ∗ , b ∗ ) target=(l^*,t^*,r^*,b^*) target=(l,t,r,b),center-ness的target label定义为 c e n t e r n e s s ∗ centerness^* centerness
在这里插入图片描述
由于 c e n t e r n e s s ∗ centerness^* centerness值在0~1之间,训练过程中可以采用 BCE损失函数 进行优化。

可以看出,当loss越小时,centerness就越接近1,也就是说回归框的中心越接近真实框。

注意: 在测试阶段,最终的置信度为center-ness和分类概率的乘积

8 后续改进

8.1 center sampling

  • 原始论文:GT bbox 内的点,分类时均作为正样本(下图上面小图的所有黄色区域)。
  • 改进 trick:只有 GT bbox 中心附近的 radius * stride 内的小 bbox(可以叫 sub box)内的点,分类时才作为正样本(下图下面小图的黄色和绿色区域)。

在这里插入图片描述
也就是要落在: ( x − r s , y − r s , x + r s , y + r s ) (x-rs,y-rs,x+rs,y+rs) (xrs,yrs,x+rs,y+rs)这个框内,作者通过消融实验发现在coco数据集上 r 取1.5效果最好。

8.2 centerness 分支的 centerness计算

  • 原始论文:利用 l,t,r,b 计算 centerness。小目标的 centerness 值比较小,最终 cls 分数很容易被阈值卡掉。
  • 改进 trick:直接用 IoU

8.3 regression分支的loss

  • 原始论文:IoU loss
  • 改进 trick:GIoU loss

8.4 bbox loss weight

  • 原始论文:平权
  • 改进 trick:用 centerness 分支的 target,即离gt中心越近,权重越大。

8.5 norm on bbox

  • 原始论文:reg分支最后使用exp操作
  • 改进 trick:reg分支最后使用relu操作

8.6 开发板上部署时优化策略

  • 使用轻量型网络,例如mobilenetv2,Efficientnet对backbone进行替换。
  • 使用BiFPN替换FPN。BIFPN给各个层赋予了不同权重去进行融合,让网络更加关注重要的层。BIFPN还减少了一些不必要的 层的结点连接。
  • 将Efficientnet中的swish激活函数替换成ReLu,去掉backbone中的sigmoid结构

9 感谢链接

https://zhuanlan.zhihu.com/p/468494402
https://zhuanlan.zhihu.com/p/156112318
https://zhuanlan.zhihu.com/p/443367551
https://zhuanlan.zhihu.com/p/104236411
https://zhuanlan.zhihu.com/p/62869137
https://blog.csdn.net/qq_37541097/article/details/124844726
  • 45
    点赞
  • 172
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
Fcos是一种基于特征金字塔网络(FPN)的目标检测网络模型,其主要特点是采用全卷积的方式进行检测,同时使用了自下而上和自上而下的特征传递方式,能够有效地解决小目标检测和多尺度检测的问题。 下面对Fcos网络模型的具体实现进行详细讲解: 1. 特征金字塔网络(FPN): Fcos网络模型基于特征金字塔网络(FPN),FPN是一种自下而上和自上而下的特征提取方式,其主要目的是解决多尺度检测问题。FPN的基本思路是使用不同层级的特征金字塔,将低层次的特征与高层次的特征进行融合,从而得到更加准确的检测结果。具体来说,FPN包括以下几个步骤: (1)自下而上的特征提取:使用卷积神经网络(CNN)对原始图像进行特征提取,得到多个不同层次的特征图。 (2)自上而下的特征融合:将高层次的特征图进行上采样,与低层次的特征图进行融合,得到更加精细的特征金字塔。 (3)特征金字塔网络:将融合后的特征金字塔送入目标检测网络中进行分类和回归。 2. Fcos网络模型的检测器: Fcos网络模型采用全卷积的方式进行检测,其检测器分为三个部分:分类分支、回归分支和中心分支。 (1)分类分支:使用全卷积网络对特征图进行分类,得到每个位置上物体的分类概率。 (2)回归分支:使用全卷积网络对特征图进行回归,得到每个位置上物体的位置和尺寸信息。 (3)中心分支:使用全卷积网络对特征图进行中心预测,得到每个位置上物体的中心点坐标。 3. Fcos网络模型的损失函数: Fcos网络模型采用Focal Loss作为损失函数,Focal Loss是一种针对类别不平衡问题的损失函数,能够有效地解决正负样本比例不均的问题。具体来说,Focal Loss将易分类样本的权重调低,将难分类样本的权重调高,从而能够更加准确地进行分类和回归。 总结: Fcos网络模型是一种基于特征金字塔网络(FPN)的目标检测网络模型,采用全卷积的方式进行检测,同时使用了自下而上和自上而下的特征传递方式,能够有效地解决小目标检测和多尺度检测的问题。Fcos网络模型的损失函数采用Focal Loss,能够有效地解决正负样本比例不均的问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值