BOF图像检索

一、BOF图像检索

Bag-of-words models模型

Bag-of-words词袋模型最初被用在信息检索领域,对于一篇文档来说,假定不考虑文档内的词的顺序关系和语法,只考虑该文档是否出现过这个单词。假设有5类主题,我们的任务是来了一篇文档,判断它属于哪个主题。在训练集中,我们有若干篇文档,它们的主题类型是已知的。我们从中选出一些文档,每篇文档内有一些词,我们利用这些词来构建词袋。我们的词袋可以是这种形式:{‘watch’,‘sports’,‘phone’,‘like’,‘roman’,……},然后每篇文档都可以转化为以各个单词作为横坐标,以单词出现的次数为纵坐标的直方图,如下图所示,之后再进行归一化,将每个词出现的频数作为文档的特征。

Bag of features算法

「Bag of Features」基本流程如下:
1、提取图像特征
2、对特征进行聚类,学习"视觉字典"
3、根据TF-IDF把输入图像转化成视觉单词的频率直方图
4、构造特征到图像的倒排表,快速索引相关图像
5、根据索引结果进行直方图匹配

  • 提取图像特征
    通过切割、密集或随机採集、关键点或稳定区域、显著区域等方式使图像形成不同的patches。并获得各patches处的特征。特征必须具有较高的区分度,而且要满足旋转不变性以及尺寸不变性等,因此,我们通常都会采用「SIFT」特征,如下图所示。
    在这里插入图片描述

  • 对特征进行聚类,学习"视觉字典"
    提取完特征后,我们会采用一些聚类算法对这些特征向量进行聚类。最常用的聚类算法是 k-means。至于 k-means 中的 k 如何取,要根据具体情况来确定。另外,由于特征的数量可能非常庞大,这个聚类的过程也会非常漫长。
    在这里插入图片描述
    由聚类中心代表的视觉词汇形成视觉词典:
    在这里插入图片描述

  • 根据TF-IDF把输入图像转化成视觉单词的频率直方图
    TF-IDF
    TF-IDF是一种用于信息检索的经常使用加权技术,在文本检索中。用以评估词语对于一个文件数据库中的当中一份文件的重要程度。词语的重要性随着它在文件里出现的频率成正比添加,但同一时候会随着它在文件数据库中出现的频率成反比下降。
    TF的主要思想是:假设某个关键词在一篇文章中出现的频率高。说明该词语能够表征文章的内容。该关键词在其它文章中非常少出现,则觉得此词语具有非常好的类别区分度,对分类有非常大的贡献。词频(TF)指的是一个给定的词语在该文件里出现的次数。如:TF = 0.030 ( 3/100 )表示在包括100个词语的文档中, 词语’A’出现了3次。
    IDF的主要思想是:假设文件数据库中包括词语A的文件越少。则IDF越大,则说明词语A具有非常好的类别区分能力。逆文档频率(IDF)是描写叙述了某一个特定词语的普遍重要性。假设某词语在很多文档中都出现过,表明它对文档的区分力不强,则赋予较小的权重;反之亦然。如:IDF = 13.287 ( log (10,000,000/1,000) )表示在总的10,000,000个文档中,有1,000个包括词语’A’。
    最终的的TF-IDF权值为词频与逆文档频率的乘积。
    对于一幅图像而言,我们可以提取出大量的「SIFT」特征点,但这些特征点仍然属于一种浅层的表达,缺乏代表性。因此,需要根据字典重新提取图像的高层特征。具体做法是,对于图像中的每一个「SIFT」特征,都可以在字典中找到一个最相似的 visual word,这样,我们可以统计一个 k 维的直方图,代表该图像的「SIFT」特征在字典中的相似度频率。
    在这里插入图片描述
    例如:对于上图这辆车的图片,我们匹配图片的「SIFT」向量与字典中的 visual word,统计出最相似的向量出现的次数,最后得到这幅图片的直方图向量。

  • 构造特征到图像的倒排表,快速索引相关图像
    既然我们需要检索相似图像,这就说明相似图像与输入图像具有相同的特征。
    在这里插入图片描述

  • 根据索引结果进行直方图匹配
    在这里插入图片描述

二、图像检测代码

1、生成词汇字典,提取图像的 SIFT特征点

# -*- coding: utf-8 -*-
import pickle
from PCV.imagesearch import vocabulary
from PCV.tools.imtools import get_imlist
from PCV.localdescriptors import sift

#获取图像列表
# imlist = get_imlist('D:/pythonProjects/ImageRetrieval/first500/')
imlist = get_imlist('C:/PycharmProjects/untitled/BOFimg/')
nbr_images = len(imlist)

#获取特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]

#提取文件夹下图像的sift特征
for i in range(nbr_images):
    sift.process_image(imlist[i], featlist[i])

#生成词汇
voc = vocabulary.Vocabulary('ukbenchtest')
voc.train(featlist, 1000, 10)
#保存词汇
# saving vocabulary
with open('C:/PycharmProjects/untitled/BOFimg/vocabulary.pkl', 'wb') as f:
    pickle.dump(voc, f)
print('vocabulary is:', voc.name, voc.nbr_words)

2、添加图像到数据库

# -*- coding: utf-8 -*-
import pickle
from PCV.imagesearch import imagesearch
from PCV.localdescriptors import sift
from sqlite3 import dbapi2 as sqlite
from PCV.tools.imtools import get_imlist

#获取图像列表
imlist = get_imlist('C:/PycharmProjects/untitled/BOFimg/')
nbr_images = len(imlist)
#获取特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]

# load vocabulary
#载入词汇
with open('C:/PycharmProjects/untitled/BOFimg/vocabulary.pkl', 'rb') as f:
    voc = pickle.load(f)
#创建索引
indx = imagesearch.Indexer('testImaAdd.db',voc)
indx.create_tables()
# go through all images, project features on vocabulary and insert
#遍历所有的图像,并将它们的特征投影到词汇上
for i in range(nbr_images)[:500]:
    locs,descr = sift.read_features_from_file(featlist[i])
    indx.add_to_index(imlist[i],descr)
# commit to database
#提交到数据库
indx.db_commit()
con = sqlite.connect('testImaAdd.db')
print(con.execute('select count (filename) from imlist').fetchone())
print(con.execute('select * from imlist').fetchone())

3、图像检测

# -*- coding: utf-8 -*-
#使用视觉单词表示图像时不包含图像特征的位置信息
import pickle
from PCV.localdescriptors import sift
from PCV.imagesearch import imagesearch
from PCV.geometry import homography
from PCV.tools.imtools import get_imlist

# load image list and vocabulary
#载入图像列表
#imlist = get_imlist('E:/Python37_course/test7/first1000/')
imlist = get_imlist('C:/PycharmProjects/untitled/BOFimg/')
nbr_images = len(imlist)
#载入特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]

#载入词汇
with open('C:/PycharmProjects/untitled/BOFimg/vocabulary.pkl', 'rb') as f:
    voc = pickle.load(f)

src = imagesearch.Searcher('testImaAdd.db',voc)# Searcher类读入图像的单词直方图执行查询

# index of query image and number of results to return
#查询图像索引和查询返回的图像数
q_ind = 0         # 匹配的图片下标
nbr_results = 14  # 数据集大小

# regular query
# 常规查询(按欧式距离对结果排序)
res_reg = [w[1] for w in src.query(imlist[q_ind])[:nbr_results]] # 查询的结果
print ('top matches (regular):', res_reg)

# load image features for query image
#载入查询图像特征进行匹配
q_locs,q_descr = sift.read_features_from_file(featlist[q_ind])
fp = homography.make_homog(q_locs[:,:3].T)

# RANSAC model for homography fitting
#用单应性进行拟合建立RANSAC模型
model = homography.RansacModel()
rank = {}
# load image features for result
#载入候选图像的特征
for ndx in res_reg[1:]:
    try:
        locs,descr = sift.read_features_from_file(featlist[ndx])  # because 'ndx' is a rowid of the DB that starts at 1
    except:
        continue
    # get matches
    matches = sift.match(q_descr,descr)
    ind = matches.nonzero()[0]
    ind2 = matches[ind]
    tp = homography.make_homog(locs[:,:3].T)
    # compute homography, count inliers. if not enough matches return empty list
    # 计算单应性矩阵
    try:
        H,inliers = homography.H_from_ransac(fp[:,ind],tp[:,ind2],model,match_theshold=4)
    except:
        inliers = []
    # store inlier count
    rank[ndx] = len(inliers)

# sort dictionary to get the most inliers first
# 对字典进行排序,可以得到重排之后的查询结果
sorted_rank = sorted(rank.items(), key=lambda t: t[1], reverse=True)
res_geom = [res_reg[0]]+[s[0] for s in sorted_rank]
print ('top matches (homography):', res_geom)

# 显示查询结果
imagesearch.plot_results(src,res_reg[:6]) #常规查询
imagesearch.plot_results(src,res_geom[:6]) #重排后的结果

三、测试图片

在这里插入图片描述

四、运行结果

1、检测图像
在这里插入图片描述

2、检测结果
在这里插入图片描述
3、重排后的结果
在这里插入图片描述

五、实验分析

检测图像是一辆自行车,但出来的结果中只有第一和第二个是自行车,其他几个都是检测失误的,后来看了图片集发现可能是因为有些自行车背景比较复杂,导致没有被检测出来;这可能也与检测图片中的SIFT特征点有关,自行车图片都是白点和黑点,导致特征点不是特别明显,导致没有出现正确的结果。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: VGG16是一种经典的卷积神经网络模型,用于图像分类任务,但是它也可以用于图像检索。在图像检索中,我们可以使用VGG16提取图像的特征向量,然后将这些特征向量用于相似度计算。 为了改进图像检索,可以考虑使用以下方法: 1. Fine-tuning VGG16模型:通过在大规模图像数据集上对VGG16模型进行微调,可以提高模型在特定数据集上的表现,从而提高图像检索的准确度。 2. 使用更先进的卷积神经网络模型:例如ResNet、Inception等,这些模型在图像分类和特征提取方面表现更好,也可以用于图像检索任务。 3. 结合其他技术:例如使用局部特征描述子(如SIFT、SURF等)和词袋模型BoF)等传统图像识别技术,可以进一步提高图像检索的准确率。 4. 结合语义信息:例如使用自然语言处理技术,将图像的语义信息与图像的特征向量结合起来,可以提高图像检索的效果。 ### 回答2: VGG16是一种经典的深度学习模型,广泛应用于图像分类任务。然而,对于图像检索这样的任务,VGG16存在一些改进的空间。 首先,VGG16模型在图像分类任务中,通过全连接层输出预测类别,而不是学习到图像特征。为了改进图像检索,我们可以修改VGG16的末尾,将全连接层替换为一个具有更低维度的嵌入层。这个嵌入层可以学习到图像的紧凑表示,使得相似的图像在特征空间中距离更近。 其次,为了进一步提高图像检索的性能,可以使用对比损失函数进行训练。对于每对图像,我们可以计算它们在特征空间中的距离,并定义一个目标函数,使得同一类别的图像距离更近,不同类别的图像距离更远。通过最小化这个目标函数,我们可以使得模型学习到更具有区分度的图像特征。 另外,为了扩展VGG16模型的应用范围,我们还可以使用预训练的权重进行微调。在大规模图像分类任务上预训练的VGG16模型可以提取出丰富的图像特征。而对于图像检索任务,我们可以通过微调模型的部分层,使得模型更加适应特定的图像检索任务。 此外,为了加速图像检索的过程,可以使用近似最近邻搜索算法,例如局部敏感哈希(LSH)等。LSH可以通过构建哈希函数,将图像特征映射到不同的桶中,从而加速相似图像的搜索过程。 综上所述,通过改进VGG16模型的末尾、采用对比损失函数训练、微调前期训练模型、使用近似最近邻算法等方法,我们可以提升VGG16在图像检索任务中的性能,使得其更好地应用于实际场景中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值