监督学习,无监督学习和弱监督学习

本文探讨了无监督学习(聚类、降维)、自监督学习(通过代理任务提取监督信息)和监督学习(使用标注数据)的区别,以及弱监督学习(不完全、不确切和不精确监督,包括半监督)的概念和应用场景。
摘要由CSDN通过智能技术生成
  • unsupervised:无监督学习,是使用没有标注的数据训练模型,不依赖任何标签值,通过对数据内在特征的挖掘,找到样本间的关系,如聚类、降维。
    • self-supervised :自监督学习,没有标注资料也会自己会学习的方法。属于 unsupervised learning。利用代理任务(pretext task)从大规模的无监督数据中挖掘自身的监督信息,通过这种构造的监督信息对网络进行训练,从而可以学习到对下游任务有价值的表征, 如对比学习。
  • supervised:监督学习,是使用了有标注的数据训练模型
  • weakly supervised learning:弱监督学习
    • incomplete supervision:不完全监督,训练数据中只有一部分数据被给了标签,有一些数据是没有标签的。
    • inexact supervision:不确切监督,训练数据只给出了粗粒度标签。我们可以把输入想象成一个包,这个包里面有一些示例,我们只知道这个包的标签,Y或N,但是我们不知道每个示例的标签。
    • inaccurate supervision:不精确监督,给出的标签不总是正确的,比如本来应该是 Y 的标签被错误标记成了 N。请添加图片描述
    • 最左边是不完全监督,即我们可以看到有一些西瓜有标签,而有一些西瓜没有标签,标注并不完全。
    • 中间的是不确切监督。对于这种情况,我们可以把这个想象成一个包,只知道这里面有西瓜,但是不知道西瓜在哪个位置,也不知道有几个,这种情况叫不确切监督。
    • 最右边的是不精确监督。即假设我们有一些西瓜,但是有一些被错误标注为菠萝,那我们称之为不精确监督。
    • semi-supervised :是同时使用了有标注与没有标注的数据训练模型。利用少量有标签数据和大量无标签数据来训练模型。常用做法是先用有标签数据(较小规模的)训练一个Teacher模型,再用这个模型对无标签数据(较大规模的)预测伪标签,作为Student模型的训练数据;

弱监督包括半监督

参考链接:

  1. 弱监督和半监督区别
  2. 知乎专栏:浅谈弱监督学习(Weakly Supervised Learning)
  3. 机器学习】什么是监督学习、半监督学习、无监督学习、自监督学习以及弱监督学习
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值