前面把加法和乘法补充了,原本想着直接开始讲李群,有了李群就容易讲函数了,
现在发现还是想的简单了,起码这个纯量乘积的向量空间,还能再吹水一周,
尽量一个月把俄罗斯的代数学引论第二册写完。
向量的定义,前面讲过了,那么再多讲点坐标,坐标本身没有意义,有意义的是这个值包含的性质,知道坐标是可以知道其中的性质,详细的内容在之前回答过,抄一下,
最开始所有的坐标可以和自然界一一对应的,都是点具有的信息,在数字小过一个临界后,这个对应就没办法在现在的物理层面上继续一一对应了,绝对坐标是有唯一一个被规定出来的,比如说奇点,而相对坐标是是随意取了一个位置作为基准,绝对坐标的使用是使用的他的信息而不是位置,因为信息才是坐标最重要的部分,而位置不是最有用的,相对坐标是为了去求的这些信息,通过知道某个位置的信息后作为基准求的一个新的位置的信息,绝对坐标是信息本身就有了不用求,相对坐标是位置信息,是要借助位置来得到信息的,
都是自己写的,直接拿来用勒,一个坐标有着这样的信息,那么用酉空间,辛空间,诶尔米特空间等等表示,就相当于知道其中的量的个数,然后放进不同的模具,模具和其中的量有关系嘛。其实是没有的,只是一种表示方式点乘,数乘,加减,都是个数的一种放置的方式,和其中的量是没有关系的,这个模具厂就可以理解成空间,完备和不完备就相当于模具是不是实心的,所以向量的加减就是用的辛空间,就是这种类似有方向的向量加法,但是辛空间是一种对角线的形式其中的坐标是正是负数时不影响在对角线上的表示的,最后的结果是一个特征值,但是也就仅仅只是数值上和辛空间有点联系。
欧几里得空间和紧性有关系,和xy的坐标没有什么联系,紧性没有随意变化就可以说是欧几里得空间,或者是局部欧几里得空间,要是随意变化的那种连续型的只能是非欧几里得空间了。
一般情况下对称双线性(*|*)在向量x,y处的值被称为纯量积,这里的纯量,纯粹的数量,
模长,一个很熟悉的东西,辛空间,是不是很类似,所以模长是辛空间的一个特性,而辛空间是代表着坐标总个数的,所以可以得到模长小于等于所有边长a和边长b的坐标乘积,原因是普通坐标代表的和辛空间坐标代表不一样,虽然个数一用的情况下,辛空间会有更长的距离,普通坐标是完备的空间,而辛空间是存在0部分的,
那么用同一个数量,分别用在两个空间里里面,那么强行统计所有的存在位置,就可以发现模长小于等于边长a和边长b的坐标乘积。这个不等式也叫做柯西不等式。其实就是强行用两种空间放在一个坐标系下硬比大小,实在是有些违规了,不过这个也就是不等式的思路,不同的空间,然后强行放在一起比长度,,虽然在各自的空间是一直的,但是都放在x0y中,就硬比出来大小了,
坐标系的作用也有了,就是强行放置不同空间,可以让计算变的更容易,但是对理解其实并不友好,之前的那些理解就被分到了各种各样的数域,这个思路可以查一下笛卡尔坐标前后的历史,就可以得到。