Cauchy-Schwarz不等式

本文深入探讨了Cauchy不等式及其推广形式——Holder不等式,并详细讲解了Cauchy-Schwarz不等式的定义及应用。该不等式指出:任意两个向量的内积(点乘)的模平方,必定小于或等于这两个向量各自的模的乘积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Cauchy不等式

在这里插入图片描述
##2. 推广: H o ¨ l d e r H\ddot{o}lder Ho¨lder不等式
在这里插入图片描述

3. Cauchy-Schwarz不等式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
结论:任意两个向量的内积(点乘)的模平方,必定小于或等于这两个向量各自的模的乘积。

https://www.jianshu.com/p/77f9607d88df
https://zhuanlan.zhihu.com/p/45928857

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值