- KNN的工作原理
存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
- 算法的一般流程
(1) 收集数据:可以使用任何方法。
(2) 准备数据:距离计算所需要的数值,最好是结构化的数据格式。
(3) 分析数据:可以使用任何方法。
(4) 训练算法:此步骤不适用于k-近邻算法。
(5) 测试算法:计算错误率。
(6) 使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。
- 示例1:使用 k-近邻算法改进约会网站的配对效果
海伦一直使用在线约会网站寻找适合自己的约会对象,发现曾交往过三种类型的人:
- 不喜欢的人
- 魅力一般的人
- 极具魅力的人
海伦希望
- 直接筛选掉不喜欢的人
- 周一至周五约会魅力一般的人
- 周末约会极具魅力的人
1、准备数据
海伦收集约会数据已经有了一段时间,每个样本数据占据一行,总共有1000行。海伦的样本主要包含以下3种特征:
- 每年获得的飞行常客里程数
- 玩视频游戏所耗时间百分比
- 每周消费的冰淇淋公升数
转换数据格式,使函数的输入为文件名字符串,输出为训练样本矩阵和类标签向量
def file2matrix(filename):
fr = open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
returnMat = zeros((numberOfLines,3))
classLabelVector = []
index = 0
for line in arraryOLines:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index +=1
return returnMat,classLabelVector
2、分析数据
使用matplotlib绘制原始数据的散点图
import matplotlib
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2])
plt.show()
3、归一化特征值
def autonorm(dataset
minvals dataset min(0)
maxvals =dataset. max(0)
ranges= maxvals-minvals
normdataset=zeros(shape(dataset))
m= dataset.shape [O]
normdataset=dataset -tile(minvals, (m, 1)
normDateSet = normdataSet/tile(ranges, (m, 1))
return normdataset, ranges, minvals
4、测试算法(作为完整程序验证分类器)并使用算法
- 示例2:手写识别系统
1、准备数据:将图像转换为测试向量
首先编写一段函数img2vector,将图像转换为向量:该函数创建1× 1024的NumPy数组,然后打开给定的文件,循环读出文件的前32行,并将每行的头32个字符值存储在NumPy数组中,最后返回数组 。
2、测试算法:使用KNN识别手写数字
k-近邻算法识别手写数字数据集,错误率为1.2%。改变变量k的值、修改函数handwritingClassTest随机选取训练样本、改变训练样本的数目,都会对k-近邻算法的错误率产生影响,可以改变这些变量值,观察错误率的变化。