博弈论—完全信息静态博弈

1.完全信息静态博弈

1.1基础理论:博弈标准式和纳什均衡

1.1.1博弈标准式

博弈的标准式包括
(1)参与者(2)每一个参与者可选择的战略集(3)针对所有参与者可能选择的战略组合,每一参与者的收益

假设参与者人数n,任意的一个参与者的序号是i,令 S i S_i Si表示参与者i的战略集合(称为i的战略空间),其中任意的一个特定的战略用 s i s_i si表示, ( s 1 , . . . , s n ) (s_1,...,s_n) (s1,...,sn)表示每一个参与者的战略组合, u i ( s 1 , . . . . , s n ) u_i(s_1,....,s_n) ui(s1,....,sn)表示参与者的收益

定义:在一个n人博弈的标准表达式中,参与者的战略空间是 S 1 , . . . , S n S_1,...,S_n S1,...,Sn,收益是 u 1 , . . . , u n u_1,...,u_n u1,...,un,我们使用 G = { S 1 , . . . . , S n ; u 1 , . . . . . , u n } G=\{S_1,....,S_n;u_1,.....,u_n\} G={S1,....,Sn;u1,.....,un}表示此博弈

注意:参与者是同时选择战略的,不意味着各方的行动是同时的,只是每一个参与者在选着行动的时候不知道其他的参与者的选择就足够了

1.1.2重复剔除严格劣战略

定义:在标准的博弈 G = { S 1 , S 2 , S 3 , . . . S n ; u 1 , u 2 , . . . u n } G=\{S_1,S_2,S_3,...S_n;u_1,u_2,...u_n\} G={S1,S2,S3,...Sn;u1,u2,...un}中,如果 s i ′ s_i^{'} si s i ′ ′ s_i^{''} si′′代表的参与者i的两个战略,如果对于其他的参与者每一个可能的战略组合,i选择 s i ′ s_i^{'} si的收益都小于选择 s i ′ ′ s_i^{''} si′′的收益,则称战略 s i ′ s_i^{'} si相对于战略 s i ′ ′ s_i^{''} si′′是严格劣战略
u i ( s 1 , s 2 , . . . , s i − 1 , s i ′ , s i + 1 , . . s n ) < u i ( s 1 , s 2 , . . . , s i − 1 , s i ′ ′ , s i + 1 , . . s n ) u_i(s_1,s_2,...,s_{i-1},s_i^{'},s_{i+1},..s_n)<u_i(s_1,s_2,...,s_{i-1},s_i^{''},s_{i+1},..s_n) ui(s1,s2,...,si1,si,si+1,..sn)<ui(s1,s2,...,si1,si′′,si+1,..sn)

理性的参与者不会选择严格劣战略,因为他对其他的人的选择没有办法判断,所以这一个战略是他的最优反应

1.1.3纳什均衡导出和定义

定义:在n个参与者标准博弈 G = { S 1 , S 2 , . . . , S n ; u 1 , . . . , u n } G=\{S_1,S_2,...,S_n;u_1,...,u_n\} G={S1,S2,...,Sn;u1,...,un}中,如果战略组合 { s 1 ∗ , s 2 ∗ , . . . s n ∗ } \{s_1^*,s_2^*,...s_n^*\} {s1,s2,...sn}满足对每一个参与者i, s i ∗ s_i^* si(至少不是最劣) 相对于其他的n-1个参与者所选择的战略 { s 1 ∗ , s 2 ∗ , . . . , s i − 1 ∗ , s i + 1 ∗ , . . . , s n ∗ } \{s_1^*,s_2^*,...,s_{i-1}^*,s_{i+1}^*,...,s_n^*\} {s1,s2,...,si1,si+1,...,sn}的最优反应策略,则称 { s 1 ∗ , . . . , s n ∗ } \{s_1^*,...,s_n^*\} {s1,...,sn}是该博弈的一个纳什均衡
u i ( s 1 ∗ , . . . , s i − 1 ∗ , s i ∗ , s i + 1 ∗ , . . . s n ∗ ) ≥ u i ( s 1 ∗ , . . . , s i − 1 ∗ , s i , s i + 1 ∗ , . . . s n ∗ ) u_i(s_1^*,...,s_{i-1}^*,s_i^*,s_{i+1}^*,...s_n^*)\geq u_i(s_1^*,...,s_{i-1}^*,s_i,s_{i+1}^*,...s_n^*) ui(s1,...,si1,si,si+1,...sn)ui(s1,...,si1,si,si+1,...sn)

协议:给定的博弈,如果参与者之间的必须商定一个协议决定博弈如何进行,那么至少有一个有效的协议中的战略组合必须是纳什均衡的组合,否则,至少有一个参与人会不遵守该协议

命题A:在n个参与者的标准式博弈 G = { S 1 , S 2 , . . . . , S n ; u 1 , . . . , u n } G=\{S_1,S_2,....,S_n;u_1,...,u_n\} G={S1,S2,....,Sn;u1,...,un},如果重复剔除严格劣战略组合 { s 1 ∗ , . . . s n ∗ } \{s_1^{*},...s_n^{*}\} {s1,...sn},那么这一战略组合是该博弈唯一的纳什均衡

命题B:在n个参与者的标准式博弈 G = { S 1 , . . . , S n ; u 1 , . . . , u n } G=\{S_1,...,S_n;u_1,...,u_n\} G={S1,...,Sn;u1,...,un}中,如果战略 { s 1 ∗ , . . . , s n ∗ } \{s_1^{*},...,s_n^{*}\} {s1,...,sn}是一个纳什均衡,那么它不会被重复剔除严格劣战略所剔除

1.2 应用

1.2.1古诺双头垄断模型

这个模型将说明如何把对同一个问题的非正式描述转化为一个博弈的标准表达形式,如何通过计算解出博弈的纳什均衡,重复剔除严格劣战略 。
模型的包含的要素有:博弈的参与人,每一个参与的人可以选择的战略,针对每一个参与人的可能的战略组合
q 1 , q 2 q_1,q_2 q1,q2分别表示企业1,2的产量,总的供给量是 Q + q 1 + q 2 Q+q_1+q_2 Q+q1+q2,成本是 C i ( q i ) = c q i C_i(q_i)=cq_i Ci(qi)=cqi
参与者的收益是
π I ( q i , q j ) = q i ( a − ( q i + q j ) − c ) \pi_I(q_i,q_j)=q_i(a-(q_i+q_j)-c) πI(qi,qj)=qi(a(qi+qj)c)
对于每个参与者 i , s i ∗ i,s_i^* i,si应该满足
u i ( s i ∗ , s j ∗ ) ≥ u i ( s i , s j ∗ ) u_i(s_i^*,s_j^*)\geq u_i(s_i,s_j^*) ui(si,sj)ui(si,sj)
在古诺的双头垄断模型中,如果一对产出组合 ( q 1 ∗ , q 2 ∗ ) (q_1^*,q_2^*) (q1,q2)是纳什均衡,对于每一个企业 i , q i ∗ i,q_i^* i,qi都有下面问题的最大化问题的解:
max ⁡ 0 ≤ q i ≤ ∞   π ( q i , q j ∗ ) = max ⁡ 0 ≤ q i ≤ ∞ q i ( a − ( q i + q j ) − c ) \max\limits_{0\leq q_i\leq \infty} \space\pi(q_i,q_j^*)=\max\limits_{0\leq q_i\leq\infty}q_i(a-(q_i+q_j)-c) 0qimax π(qi,qj)=0qimaxqi(a(qi+qj)c)
在企业的例子中, q j ∗ < a − c q_j^*<a-c qj<ac ,企业的一阶条件是必要条件又是充分条件,解为:
q 1 ∗ = 1 2 ( q − q 2 ∗ − c ) q_1*=\frac{1}{2}(q-q_2^*-c) q1=21(qq2c), 且 q 2 ∗ = 1 2 ( q − q 1 ∗ − c ) q_2*=\frac{1}{2}(q-q_1^*-c) q2=21(qq1c)

1.2.2贝特兰德双头垄断模型

假设存在替代品
q i ( p i , p j ) = a − p i + b p j q_i(p_i,p_j)=a-p_i+bp_j qi(pi,pj)=api+bpj
当企业i选择价格 p i p_i pi,对手选择价格 p j p_j pj,企业i的利润是
π ( p i , p j ) = q i ( p i , p − j ) [ p i − c ] = [ a − p i + b p j ] [ p i − c ] \pi(p_i,p_j)=q_i(p_i,p-j)[p_i-c]=[a-p_i+bp_j][p_i-c] π(pi,pj)=qi(pi,pj)[pic]=[api+bpj][pic],对于每个企业i, p i ∗ p_i^* pi应该是一下最优化问题的解:
max ⁡ 0 ≤ p i ≤ ∞ π ( p i , p j ∗ ) = max ⁡ 0 ≤ p i ≤ ∞ q i ( p i , p j ∗ ) [ p i − c ] = [ a − p i + b p j ∗ ] [ p i − c ] \max\limits_{0\leq p_i \leq \infty}\pi(p_i,p_j^*)=\max\limits_{0\leq p_i \leq \infty} q_i(p_i,p_j^*)[p_i-c]=[a-p_i+bp_j^*][p_i-c] 0pimaxπ(pi,pj)=0pimaxqi(pi,pj)[pic]=[api+bpj][pic]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值