【深度学习】线性回归与softmax回归(简记)

预测模型:

        \hat{y}=\vec{w}^T\cdot\vec{x}+b

         其中 \vec{w} 和 \vec{x} 是列向量,分别储存着所有的权重和特征

损失函数:

        L=\frac{1}{2n}\sum\limits_{i=1}^n(\hat{y}^{(i)}-y^{(i)})=\frac{1}{2n}\bf{(\hat{y}-y)}^T\cdot (\hat{y}-y)

        其中 n 是样本总量,i 是每组样本数据计算的结果

目标:

        \vec{w},b=argmin\ L       

        找到一组权重和偏差值使损失函数最小

小批量线性回归: 

(1)调整超参数:批量大小:m(m > 0);学习率:η(η > 0)

(2)随机选取初始权重和偏差值

(3)进行迭代:

        \begin{aligned} &w_t=w_t-\frac{\eta}{m}\sum\limits_{i=1}^mx_t^{(i)}\cdot (\hat{y}^{(i)}-y^{(i)})\\ &b=b- \frac{\eta}{m}\sum\limits_{i=1}^m(\hat{y}^{(i)}-y^{(i)}) \end{align}

注意:迭代过程应该权重与偏差值同时进行

线性回归的神经网络:

\hat{y}=o

输入个数也叫特征数特征向量维度

由于输入层不涉及计算,所以线性回归是一个单层神经网络

 输出层中的神经元和输入层中各个输入完全连接,所以这里的输出层又叫全连接层稠密层

softmax 回归:

输出是离散值,多个输出单元

输出值的个数等于标签的类别数

预测模型(有 i 个特征值,j 个标签类别):

归一化处理:

损失函数:

L=-\frac{1}{n}\sum_{i=1}^n\log \hat{y}^{(i)}_{y^{(i)}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

六月渔烬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值