预测模型:
其中 和 是列向量,分别储存着所有的权重和特征
损失函数:
其中 n 是样本总量,i 是每组样本数据计算的结果
目标:
找到一组权重和偏差值使损失函数最小
小批量线性回归:
(1)调整超参数:批量大小:m(m > 0);学习率:η(η > 0)
(2)随机选取初始权重和偏差值
(3)进行迭代:
注意:迭代过程应该权重与偏差值同时进行
线性回归的神经网络:
输入个数也叫特征数或特征向量维度
由于输入层不涉及计算,所以线性回归是一个单层神经网络
输出层中的神经元和输入层中各个输入完全连接,所以这里的输出层又叫全连接层或稠密层
softmax 回归:
输出是离散值,多个输出单元
输出值的个数等于标签的类别数
预测模型(有 i 个特征值,j 个标签类别):
归一化处理:
损失函数: