【常微分方程】2.1-2.6知识点总结

【常微分方程】2.1-2.6知识点总结

变量分离方程

形式: d y d x = f ( x ) φ ( y ) \frac{\mathrm{d} y}{\mathrm{d} x} =f(x)\varphi (y) dxdy=f(x)φ(y)
解法:(1)分离变量(2)两边积分得解
注意: 分母为0有特解的情况

齐次方程

形式: d y d x = g ( y x ) \frac{\mathrm{d} y}{\mathrm{d} x} =g(\frac{y}{x}) dxdy=g(xy)
解法:
(1)令 u = y x u=\frac{y}{x} u=xy,得变量分离方程
(2)解这个变量分离方程
(3)变量还原

一阶线性微分方程

形式: d y d x + p ( x ) y = q ( x ) \frac{\mathrm{d} y}{\mathrm{d} x} +p(x)y=q(x) dxdy+p(x)y=q(x)
解法: 套用公式即可: y = e − ∫ p ( x ) d x ( C + ∫ q ( x ) e ∫ p ( x ) d x d x ) y=e^{-\int p(x)dx}(C+\int q(x)e^{\int p(x)dx}dx) y=ep(x)dx(C+q(x)ep(x)dxdx)

Bernoulli方程

形式: d y d x + p ( x ) y = q ( x ) y n \frac{\mathrm{d} y}{\mathrm{d} x} +p(x)y=q(x)y^{n} dxdy+p(x)y=q(x)yn
解法:
(1)两边同时乘以 ( 1 − n ) y − n (1-n)y^{-n} (1n)yn
(2)令 z = y 1 − n z=y^{1-n} z=y1n,可得一个一阶线性微分方程
(3)解线性微分方程
(4)变量还原

Riccat方程

形式: d y d x = p ( x ) y 2 + q ( x ) y + r ( x ) \frac{\mathrm{d} y}{\mathrm{d} x} =p(x)y^{2}+q(x)y+r(x) dxdy=p(x)y2+q(x)y+r(x)
解法: 若已知有特解 y = φ ( x ) y=\varphi (x) y=φ(x),则作变换 y = z + φ ( x ) y=z+\varphi (x) y=z+φ(x),即可得解

恰当方程与积分因子

若存在 ϕ ( x ) \phi(x) ϕ(x),使得 d ϕ ( x ) = P ( x , y ) d x + Q ( x , y ) d y d\phi(x)=P(x,y)dx+Q(x,y)dy dϕ(x)=P(x,y)dx+Q(x,y)dy,则可求出 P ( x , y ) d x + Q ( x , y ) d y = 0 P(x,y)dx+Q(x,y)dy=0 P(x,y)dx+Q(x,y)dy=0 的解。

原函数与恰当方程的关系可以使用下图表示:

在这里插入图片描述
恰当方程判断方法:
(方法一) ∂ ϕ ∂ x = P ( x , y ) \frac {\partial \phi}{\partial x}=P(x,y) xϕ=P(x,y) ∂ ϕ ∂ y = Q ( x , y ) \frac {\partial \phi}{\partial y}=Q(x,y) yϕ=Q(x,y)
(方法二) ∂ P ∂ y ( x , y ) ≡ ∂ Q ∂ x ( x , y ) \frac {\partial P}{\partial y} (x,y) \equiv \frac {\partial Q}{\partial x} (x,y) yP(x,y)xQ(x,y)

ϕ ( x ) \phi(x) ϕ(x)解法:
(1)由 ∂ ϕ ∂ x = P ( x , y ) \frac {\partial \phi}{\partial x}=P(x,y) xϕ=P(x,y)求得 ϕ ( x ) = □ + φ ( y ) \phi(x)=\square+\varphi (y) ϕ(x)=+φ(y)
(2)再由 ∂ ϕ ∂ y = Q ( x , y ) \frac {\partial \phi}{\partial y}=Q(x,y) yϕ=Q(x,y),得 ∂ [ □ + φ ( y ) ] ∂ y = Q ( x , y ) \frac{\partial[\square+\varphi (y)]}{\partial y}=Q(x,y) y[+φ(y)]=Q(x,y),即得 φ ( y ) \varphi (y) φ(y)
(3)将 φ ( y ) \varphi (y) φ(y)带入到 ϕ ( x ) = □ + φ ( y ) \phi(x)=\square+\varphi (y) ϕ(x)=+φ(y) 中。

积分因子: 原本 P ( x , y ) d x + Q ( x , y ) d y = 0 P(x,y)dx+Q(x,y)dy=0 P(x,y)dx+Q(x,y)dy=0 不是恰当方程,但是 μ ( x , y ) P ( x , y ) d x + μ ( x , y ) Q ( x , y ) d y = 0 \mu (x,y)P(x,y)dx+\mu (x,y)Q(x,y)dy=0 μ(x,y)P(x,y)dx+μ(x,y)Q(x,y)dy=0 是恰当方程,则 μ ( x , y ) \mu (x,y) μ(x,y)是该方程的积分因子。

解积分因子: 积分因子无法直接解出,但是可以考虑依赖性。
(1)当 ∂ P ∂ y − ∂ Q ∂ x Q = : G ( x ) \frac{\frac {\partial P}{\partial y}- \frac {\partial Q}{\partial x}}{Q}=:G(x) QyPxQ=:G(x) 时, μ = e ∫ G ( x ) d x \mu=e^{\int G(x)dx} μ=eG(x)dx.
(2)当 ∂ P ∂ y − ∂ Q ∂ x − P = : H ( x ) \frac{\frac {\partial P}{\partial y}- \frac {\partial Q}{\partial x}}{-P}=:H(x) PyPxQ=:H(x) 时, μ = e ∫ H ( x ) d x \mu=e^{\int H(x)dx} μ=eH(x)dx.

分组求积分因子:
P 1 ( x , y ) d x + Q 1 ( x , y ) d y + P 2 ( x , y ) d x + Q 2 ( x , y ) d y = 0 P_{1}(x,y)dx+Q_{1}(x,y)dy+P_{2}(x,y)dx+Q_{2}(x,y)dy=0 P1(x,y)dx+Q1(x,y)dy+P2(x,y)dx+Q2(x,y)dy=0
分成两组:
P 1 ( x , y ) d x + Q 1 ( x , y ) d y = 0 P_{1}(x,y)dx+Q_{1}(x,y)dy=0 P1(x,y)dx+Q1(x,y)dy=0
P 2 ( x , y ) d x + Q 2 ( x , y ) d y = 0 P_{2}(x,y)dx+Q_{2}(x,y)dy=0 P2(x,y)dx+Q2(x,y)dy=0
则, μ 1 g 1 ( ϕ 1 ) = μ 2 g 2 ( ϕ 2 ) = μ \mu_{1}g_{1}(\phi_{1})=\mu_{2}g_{2}(\phi_{2})=\mu μ1g1(ϕ1)=μ2g2(ϕ2)=μ

在这里插入图片描述
参考资料https://blog.csdn.net/SYS_Emulated/article/details/90810393

  • 5
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在Matlab中,可以使用打靶法(shooting method)求解二阶拟线性常微分方程。二阶拟线性常微分方程可以写成如下形式: y''(x) = f(x, y(x), y'(x)) 其中,f(x, y(x), y'(x))是关于自变量x,因变量y(x)及其导数y'(x)的函数。要使用打靶法求解这样的方程,需要设定边界条件,并将方程转化为一组一阶方程。 首先,将二阶方程转化为一组一阶方程。假设y1(x) = y(x)和y2(x) = y'(x),我们可以得到: y1'(x) = y2(x) y2'(x) = f(x, y1(x), y2(x)) 然后,我们可以使用数值方法(如欧拉法、龙格-库塔法等)来求解这个一阶方程组。通过调整初始条件y2(x0),我们可以尝试寻找满足边界条件y(xa) = ya和y'(xa) = y'a的解。这个过程类似于打靶,通过调整y2(x0)的值来逼近边界条件。 举个例子,假设我们要求解的二阶拟线性常微分方程是: y''(x) + 2xy'(x) + y(x) = 0 边界条件是y(0) = 1和y(1) = 2。我们可以选择一个初始条件y2(x0) = 0,并使用数值方法求解这个一阶方程组。然后,根据求解得到的y(x)和y'(x),我们可以判断是否满足边界条件。如果不满足,我们可以适当调整y2(x0)的值,并再次求解,直到满足边界条件为止。这样就得到了二阶拟线性常微分方程的数值解。 这只是一个简单的例子,实际应用中可能还需要考虑更多的因素。但通过使用打靶法和数值方法,我们可以求解许多二阶拟线性常微分方程的数值解。<span class="em">1</span> #### 引用[.reference_title] - *1* [shoot.zip_MATLAB打靶法_matlab打靶_二阶非线性常微分方程求解_打靶法_非线性 打靶法](https://download.csdn.net/download/weixin_42653672/86192953)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值