用 Telegram 创建群聊客服聊天系统(5)

第八篇:实时统计与监控系统的实现

在上一部分,我们完成了智能化客服功能的开发,使得系统能够自动处理大部分常见问题并转交复杂问题给人工客服。然而,对于系统管理者而言,实时了解系统运行状况是必不可少的。本文将继续深入,带你实现 实时统计与监控系统,为客服管理提供更高效的支持。

推荐正在找工作的朋友们:

就业指导面试指导 (不是机构)
博客Java直达Offer
公众号:Java直达Offer

1. 为什么需要实时统计与监控?

客服系统的实时监控有助于:

  1. 掌握系统负载:了解当前的客服工作量。
  2. 发现问题:及时发现未解决问题的积压情况。
  3. 优化资源分配:通过统计数据动态调整客服任务分配。

2.系统设计概述

我们计划为系统引入以下监控功能:

1.实时数据统计:

  • 当前在线客户数量。
  • 当前活跃的客服数量。
  • 机器人解决问题的数量与成功率。
  • 等待人工客服处理的问题数。

2.可视化仪表盘:

  • 使用图表展示客服系统的运行数据。
  • 提供警报提示(如未处理问题达到一定阈值)。

3. 数据统计功能实现

3.1 数据统计模块的基本实现

我们需要对以下几个核心指标进行统计:

  • 总客户数:统计当前活跃客户数。
  • 总问题数:记录系统中收到的所有问题数。
  • 机器人解决率:计算机器人自动回复的成功率。

数据库设计
以下是新增的表设计:

-- 记录系统运行的关键指标
CREATE TABLE system_metrics (
    id BIGINT AUTO_INCREMENT PRIMARY KEY,
    metric_name VARCHAR(255) NOT NULL,
    metric_value BIGINT DEFAULT 0,
    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

-- 示例:初始化部分指标
INSERT INTO system_metrics (metric_name, metric_value) VALUES
('total_customers', 0),
('total_questions', 0),
('bot_solved_questions', 0),
('pending_human_questions', 0);

统计逻辑实现
每次有新客户接入或新问题提交时,更新相关统计数据:

// 更新统计指标的方法
private void updateMetric(String metricName, long delta) {
    String sql = "UPDATE system_metrics SET metric_value = metric_value + ? WHERE metric_name = ?";
    try (PreparedStatement stmt = connection.prepareStatement(sql)) {
        stmt.setLong(1, delta);
        stmt.setString(2, metricName);
        stmt.executeUpdate();
    } catch (SQLException e) {
        e.printStackTrace();
    }
}

// 示例:新客户接入时
private void onNewCustomerJoined() {
    updateMetric("total_customers", 1);
}

// 示例:机器人成功解决问题时
private void onBotSolvedQuestion() {
    updateMetric("bot_solved_questions", 1);
    updateMetric("total_questions", 1);
}

// 示例:转交人工客服时
private void onForwardedToHuman() {
    updateMetric("pending_human_questions", 1);
}

3.2 实时统计 API

为了支持前端展示监控数据,需要提供一个 API 返回当前的系统统计数据。

import com.google.gson.JsonObject;

@WebServlet("/api/system_metrics")
public class SystemMetricsServlet extends HttpServlet {

    @Override
    protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws IOException {
        JsonObject metrics = new JsonObject();

        // 查询所有统计数据
        String sql = "SELECT metric_name, metric_value FROM system_metrics";
        try (Statement stmt = connection.createStatement();
             ResultSet rs = stmt.executeQuery(sql)) {
            while (rs.next()) {
                metrics.addProperty(rs.getString("metric_name"), rs.getLong("metric_value"));
            }
        } catch (SQLException e) {
            e.printStackTrace();
        }

        // 设置返回值
        resp.setContentType("application/json");
        resp.getWriter().write(metrics.toString());
    }
}

4. 数据可视化

4.1 引入前端可视化库

我们可以使用以下工具来实现数据的可视化展示:

Chart.js:轻量化的 JavaScript 图表库。
ECharts:功能强大的可视化图表工具。
D3.js:用于构建复杂数据驱动的交互式可视化。
在这里,我们选择 ECharts,因为它支持多种图表类型且易于扩展。

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>客服系统监控仪表盘</title>
    <script src="https://cdn.jsdelivr.net/npm/echarts/dist/echarts.min.js"></script>
</head>
<body>
    <h1>客服系统实时监控仪表盘</h1>
    <div id="metricsChart" style="width: 100%; height: 400px;"></div>

    <script>
        // 初始化图表
        var chart = echarts.init(document.getElementById('metricsChart'));

        // 数据获取与图表更新
        function fetchMetrics() {
            fetch('/api/system_metrics')
                .then(response => response.json())
                .then(data => {
                    chart.setOption({
                        title: { text: '客服系统实时统计' },
                        tooltip: {},
                        xAxis: {
                            type: 'category',
                            data: ['总客户数', '总问题数', '机器人解决数', '人工待处理数']
                        },
                        yAxis: { type: 'value' },
                        series: [{
                            type: 'bar',
                            data: [
                                data.total_customers || 0,
                                data.total_questions || 0,
                                data.bot_solved_questions || 0,
                                data.pending_human_questions || 0
                            ]
                        }]
                    });
                });
        }

        // 每 5 秒刷新一次
        fetchMetrics();
        setInterval(fetchMetrics, 5000);
    </script>
</body>
</html>

5. 警报功能

为了及时发现异常情况,我们可以设置阈值报警,比如未处理问题超过一定数量时,发送通知到管理员 Telegram。

5.1 实现警报逻辑

private void checkAndAlertPendingQuestions() {
    String sql = "SELECT metric_value FROM system_metrics WHERE metric_name = 'pending_human_questions'";
    try (Statement stmt = connection.createStatement();
         ResultSet rs = stmt.executeQuery(sql)) {
        if (rs.next()) {
            long pendingQuestions = rs.getLong("metric_value");
            if (pendingQuestions > 10) { // 设置阈值为 10
                sendAlertToAdmin("警报:待处理问题数已超过 10 个,请及时处理!");
            }
        }
    } catch (SQLException e) {
        e.printStackTrace();
    }
}

private void sendAlertToAdmin(String message) {
    // 使用 Telegram Bot API 发送通知
    sendMessageToTelegramAdmin(message);
}

将 checkAndAlertPendingQuestions 方法定时执行,可以使用 ScheduledExecutorService。

总结

本篇博客中,我们实现了客服系统的实时统计与监控功能,包括:

数据统计的逻辑与数据库设计。
提供实时统计数据的 API。
使用 ECharts 构建可视化仪表盘。
实现警报通知功能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lu_ffy-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值