第八篇:实时统计与监控系统的实现
在上一部分,我们完成了智能化客服功能的开发,使得系统能够自动处理大部分常见问题并转交复杂问题给人工客服。然而,对于系统管理者而言,实时了解系统运行状况是必不可少的。本文将继续深入,带你实现 实时统计与监控系统,为客服管理提供更高效的支持。
推荐正在找工作的朋友们:
就业指导 或 面试指导 (不是机构)
博客:Java直达Offer
公众号:Java直达Offer
1. 为什么需要实时统计与监控?
客服系统的实时监控有助于:
- 掌握系统负载:了解当前的客服工作量。
- 发现问题:及时发现未解决问题的积压情况。
- 优化资源分配:通过统计数据动态调整客服任务分配。
2.系统设计概述
我们计划为系统引入以下监控功能:
1.实时数据统计:
- 当前在线客户数量。
- 当前活跃的客服数量。
- 机器人解决问题的数量与成功率。
- 等待人工客服处理的问题数。
2.可视化仪表盘:
- 使用图表展示客服系统的运行数据。
- 提供警报提示(如未处理问题达到一定阈值)。
3. 数据统计功能实现
3.1 数据统计模块的基本实现
我们需要对以下几个核心指标进行统计:
- 总客户数:统计当前活跃客户数。
- 总问题数:记录系统中收到的所有问题数。
- 机器人解决率:计算机器人自动回复的成功率。
数据库设计
以下是新增的表设计:
-- 记录系统运行的关键指标
CREATE TABLE system_metrics (
id BIGINT AUTO_INCREMENT PRIMARY KEY,
metric_name VARCHAR(255) NOT NULL,
metric_value BIGINT DEFAULT 0,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);
-- 示例:初始化部分指标
INSERT INTO system_metrics (metric_name, metric_value) VALUES
('total_customers', 0),
('total_questions', 0),
('bot_solved_questions', 0),
('pending_human_questions', 0);
统计逻辑实现
每次有新客户接入或新问题提交时,更新相关统计数据:
// 更新统计指标的方法
private void updateMetric(String metricName, long delta) {
String sql = "UPDATE system_metrics SET metric_value = metric_value + ? WHERE metric_name = ?";
try (PreparedStatement stmt = connection.prepareStatement(sql)) {
stmt.setLong(1, delta);
stmt.setString(2, metricName);
stmt.executeUpdate();
} catch (SQLException e) {
e.printStackTrace();
}
}
// 示例:新客户接入时
private void onNewCustomerJoined() {
updateMetric("total_customers", 1);
}
// 示例:机器人成功解决问题时
private void onBotSolvedQuestion() {
updateMetric("bot_solved_questions", 1);
updateMetric("total_questions", 1);
}
// 示例:转交人工客服时
private void onForwardedToHuman() {
updateMetric("pending_human_questions", 1);
}
3.2 实时统计 API
为了支持前端展示监控数据,需要提供一个 API 返回当前的系统统计数据。
import com.google.gson.JsonObject;
@WebServlet("/api/system_metrics")
public class SystemMetricsServlet extends HttpServlet {
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws IOException {
JsonObject metrics = new JsonObject();
// 查询所有统计数据
String sql = "SELECT metric_name, metric_value FROM system_metrics";
try (Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sql)) {
while (rs.next()) {
metrics.addProperty(rs.getString("metric_name"), rs.getLong("metric_value"));
}
} catch (SQLException e) {
e.printStackTrace();
}
// 设置返回值
resp.setContentType("application/json");
resp.getWriter().write(metrics.toString());
}
}
4. 数据可视化
4.1 引入前端可视化库
我们可以使用以下工具来实现数据的可视化展示:
Chart.js:轻量化的 JavaScript 图表库。
ECharts:功能强大的可视化图表工具。
D3.js:用于构建复杂数据驱动的交互式可视化。
在这里,我们选择 ECharts,因为它支持多种图表类型且易于扩展。
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>客服系统监控仪表盘</title>
<script src="https://cdn.jsdelivr.net/npm/echarts/dist/echarts.min.js"></script>
</head>
<body>
<h1>客服系统实时监控仪表盘</h1>
<div id="metricsChart" style="width: 100%; height: 400px;"></div>
<script>
// 初始化图表
var chart = echarts.init(document.getElementById('metricsChart'));
// 数据获取与图表更新
function fetchMetrics() {
fetch('/api/system_metrics')
.then(response => response.json())
.then(data => {
chart.setOption({
title: { text: '客服系统实时统计' },
tooltip: {},
xAxis: {
type: 'category',
data: ['总客户数', '总问题数', '机器人解决数', '人工待处理数']
},
yAxis: { type: 'value' },
series: [{
type: 'bar',
data: [
data.total_customers || 0,
data.total_questions || 0,
data.bot_solved_questions || 0,
data.pending_human_questions || 0
]
}]
});
});
}
// 每 5 秒刷新一次
fetchMetrics();
setInterval(fetchMetrics, 5000);
</script>
</body>
</html>
5. 警报功能
为了及时发现异常情况,我们可以设置阈值报警,比如未处理问题超过一定数量时,发送通知到管理员 Telegram。
5.1 实现警报逻辑
private void checkAndAlertPendingQuestions() {
String sql = "SELECT metric_value FROM system_metrics WHERE metric_name = 'pending_human_questions'";
try (Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sql)) {
if (rs.next()) {
long pendingQuestions = rs.getLong("metric_value");
if (pendingQuestions > 10) { // 设置阈值为 10
sendAlertToAdmin("警报:待处理问题数已超过 10 个,请及时处理!");
}
}
} catch (SQLException e) {
e.printStackTrace();
}
}
private void sendAlertToAdmin(String message) {
// 使用 Telegram Bot API 发送通知
sendMessageToTelegramAdmin(message);
}
将 checkAndAlertPendingQuestions 方法定时执行,可以使用 ScheduledExecutorService。
总结
本篇博客中,我们实现了客服系统的实时统计与监控功能,包括:
数据统计的逻辑与数据库设计。
提供实时统计数据的 API。
使用 ECharts 构建可视化仪表盘。
实现警报通知功能。