【机器学习】正规方程法求解线性回归问题

前情提要:https://blog.csdn.net/weixin_45434953/article/details/130604086

正规方程

正规方程能以更好的方式求得假设函数中 θ \theta θ的最优值。它提供了一种用于求 θ \theta θ的解析方法,而不是梯度下降那样的迭代方法。也就是只需要一次运算就可以得出结果。设有一个代价函数 J ( θ 0 , θ 1 . . . , θ n ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta_0,\theta_1...,\theta_n) = \frac{1}{2m}\sum_{i=1}^{m} (h_\theta(x^{(i)})-y^{(i)})^2 J(θ0,θ1...,θn)=2m1i=1m(hθ(x(i))y(i))2那么我们对于每一个 j ∈ ( 0 , m ) j\in(0,m) j(0,m) ∂ ∂ θ j J ( θ ) = 0 \frac{\partial}{\partial \theta_j}J(\theta)=0 θjJ(θ)=0,然后求出 θ j \theta_j θj的值。根据微积分,我们知道函数 f ( x ) f(x) f(x)若在 x = x 0 x=x_0 x=x0取得最小值 f ( x 0 ) = f m i n ( x ) f(x_0)=f_{min}(x) f(x0)=fmin(x),那么在 x 0 x_0 x0 f ( x ) f(x) f(x)的导数 f ′ ( x 0 ) f'(x_0) f(x0)一定为0。反过来,导数为0的位置不一定是最值。

假设现在的数据样本如下:
在这里插入图片描述
前面说过, x 0 x_0 x0是恒等于1的。那么实际上我们可以根据上述的数据构建如下的矩阵:
X = [ 1 2104 5 1 45 1 1416 3 2 40 1 1534 3 2 30 1 852 2 1 36 ] , y = [ 460 232 315 178 ] X=\begin{bmatrix} 1& 2104& 5 & 1 & 45\\ 1& 1416& 3 & 2 & 40\\ 1& 1534& 3 & 2 & 30\\ 1& 852& 2 & 1 & 36\end{bmatrix}, y=\begin{bmatrix} 460\\ 232\\ 315\\ 178 \end{bmatrix} X= 11112104141615348525332122145403036 ,y= 460232315178
那么,计算 θ \theta θ的方法是:
θ = ( X T X ) − 1 X T y \theta=(X^TX)^{-1}X^Ty θ=(XTX)1XTy

需要注意的是,正规方程不需要使用特征缩放。

正规方程和梯度下降的对比:
梯度下降需要选择学习速率,并且需要迭代,而正规方程不需要。但是对于特征量n较大的情况, ( X T X ) − 1 (X^TX)^{-1} (XTX)1会消耗大量的时间,通常认为正规方程的时间复杂度为O(n3),因此梯度下降更适合应对n较大的情况,一般以n=10000为分界线。而且梯度下降在很多算法中都会广泛的应用,但是正规方程一般只用于线性回归。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值